Hydraulic Valve INDEX

Kosmek valves are most appropriate for fixtures and setup devices.

- **Non-Leak Valve (Holding Pressure)**
 Kosmek valves with non-leak function maintain pressurized condition even when a fixture is detached from a hydraulic power source.

- **Non-Leak Stop Valve (Manual Switching Valve)**
 It is a manual switching valve that can hold pressure without power source.

- **Sequence Valve**
 In-line sequence valve that allows for simple sequence control.

- **Pressure Balance Valve**
 This valve prevents deformation of a workpiece caused by release sequence operation in case a work support is arranged facing to an actuator.

- **Accumulator**
 Spring accumulator absorbs pressure fluctuation caused by temperature change in the fixture circuit when disconnected from the pressure source.

- **Pressure Indicator (Pressure Switch)**
 Detects circuit pressure of the fixture disconnected from the hydraulic pressure source by using a limit switch together.
Pressure Reducing Valve

By using non-leak function, the in-line reducing valve does not require a drain port which partially reduces the circuit pressure.

Booster (Continuous Discharge Booster/One Shot Booster)

In-line type One Shot Booster (Model : BU), and Continuous Discharge Booster (Model : AU) that allows no restrictions on the outgoing side circuit capacity with continuous discharge.

Pilot Reducing Valve/Reservoir

Pressure of a fixture circuit disconnected from the hydraulic power source, can be reduced to the set pressure only by pilot operation.

Automatic Air Bleed Valve

Placed on the top of the piping, this valve bleeds air automatically during repetition of the hydraulic pressure ON / OFF.

Non-Leak Pilot Check Valve

It holds pressure even after the hydraulic supply is cut off. The mounting surface of modular model is based on ISO4401-03.

Non-Leak Valve Unit (Holding Pressure)

Non-leak valve units which are operated manually or electrically.
Hydraulic Valve Double Action Circuit Reference
Disconnected Fixture Example in Double Action Circuit
Action Description

<table>
<thead>
<tr>
<th>Operation Sequence</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Released State</td>
<td>Release hydraulic pressure turns ON when quick coupler is connected between power unit and BEQ.</td>
</tr>
<tr>
<td>Load a workpiece on the fixture.</td>
<td></td>
</tr>
<tr>
<td>Turn off release pressure, and turn on lock pressure.</td>
<td></td>
</tr>
</tbody>
</table>
| ① Push cylinder is activated and it locates the workpiece.
③④ Work support is activated.
②③ Work clamp is activated. | The reduced pressure is supplied by reducing valve.
It is activated after ① by sequence valve.
To prevent deformation of the workpiece, activate them after ③④ by flow control valve. |
| Lock action is completed. |
| Hydraulic Pressure Source OFF |
| Non-leak valve is disconnected from hydraulic power source. |
| Machining and/or Transferring |
| Connect hydraulic power source to non-leak valve. |
| When release pressure is ON and lock pressure is OFF,
the pilot check valve of non-leak valve opens. |
| ①②③⑤ Actuators are released. |
| ④ Work Support is released. | Work support is released after ①②③⑤ by pressure balance valve to prevent deformation of the workpiece. |
| Release action is completed. |
Hydraulic Valve Single Action Circuit Reference
Disconnected Fixture Example in Single Action Circuit

1. Push Cylinder (model JGA)
2. Work Clamp 1
3. Work Clamp 2 (Placed against the Work Support)
4. Work Support 1
5. Work Support 2 (Placed against the Clamp)

Pressure Gauge (model JGA)
Accumulator (model JSS)
Non-Leak Valve (model BK)
Sequence Valve (model BLS)
Booster (One Shot Model) (model BU)
Pressure Balance Valve (model BLB)

Air Hydraulic Unit (model CV)
Action Description

<table>
<thead>
<tr>
<th>Operation Sequence</th>
<th>Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>Released State</td>
<td>Hydraulic pressure turns OFF when quick coupler is connected with BK valve.</td>
</tr>
<tr>
<td>Load a workpiece on the fixture.</td>
<td></td>
</tr>
<tr>
<td>Hydraulic Pressure ON</td>
<td></td>
</tr>
<tr>
<td>① Push Cylinder is activated and it locates the workpiece.</td>
<td></td>
</tr>
<tr>
<td>②③④⑤ Actuators are activated. (Pressure boosted by BU is supplied to ④ Work Support.)</td>
<td>It is activated after ① Push Cylinder by sequence valve. ③ Work Clamp is activated after ⑤ Work Support by flow control valve to prevent deformation of the workpiece.</td>
</tr>
<tr>
<td>Locking action is completed.</td>
<td></td>
</tr>
<tr>
<td>Hydraulic Pressure OFF</td>
<td></td>
</tr>
<tr>
<td>BK valve is disconnected from hydraulic power source.</td>
<td></td>
</tr>
<tr>
<td>Machining and/or Transferring</td>
<td></td>
</tr>
<tr>
<td>Connect hydraulic power source to non-leak valve.</td>
<td>By holding the lever at release position for about one second, outgoing side pressure will be released even if the operator removes his/her hand in the middle of release operation.</td>
</tr>
<tr>
<td>Operate BK valve lever to release.</td>
<td></td>
</tr>
<tr>
<td>①②③④ Actuators are released.</td>
<td></td>
</tr>
<tr>
<td>⑤ Work Support is released.</td>
<td>It is released after ①②③④ by pressure balance valve to prevent deformation of the workpiece.</td>
</tr>
<tr>
<td>Release action is completed.</td>
<td></td>
</tr>
</tbody>
</table>
Safety Circuit, Holding the Datum Point

By using non-leak valve, non-leak pilot check valve, it allows to secure safety.

Since the non-leak vale and the non-leak pilot check vale can hold pressure even if power is lost, there is no reason for concern that the workpiece falls off.

The workpiece falls off by losing the hydraulic power supply.

Hold the workpiece in position by maintaining hydraulic pressure. (Non-leak function allows to hold the position for a long time without leakage.)

The Reliability of Non-Leak Function

The graph below shows the data analysis of the oil temperature, the amount of time and the change in pressure while hydraulic pressure is disconnected from power source.

Due to temperature change, maintained pressure changes but not due to leakage. You can set the hydraulic circuit more stable when combined with the accumulator.

Influence of Temperature Change on Hydraulic Circuit

Hydraulic pressure of sealed circuit disconnected from hydraulic source by non-leak valve, etc. is significantly affected by ambient temperature change and supply oil temperature change. (Especially when using a motor pump, high temperature oil is supplied and the temperature rapidly decreases after sealing.) Although it differs depending on the amount of air mixed, product, piping/hose expansion and temperature condition, etc., Kosmek standard is as shown on the right regardless of the amount of oil contained.
One Touch Workpiece Set Up on 4-Surface Tombstone Fixture

Example for Using Non-Leak Stop Valve on 4-Surface Tombstone Fixture

While changing workpiece on 4-surface tombstone fixture, using 1pc non-leak stop valve (Model : BT) on each surface, this prevents workpiece from falling off and enables to operate clamp/unclamp.

Action Description

<table>
<thead>
<tr>
<th>Operation Sequence</th>
<th>Operation Sequence</th>
</tr>
</thead>
<tbody>
<tr>
<td>When locking</td>
<td>Hydraulic pressure is ON.</td>
</tr>
<tr>
<td>Place the workpiece on.</td>
<td>Place the workpiece on.</td>
</tr>
<tr>
<td>When BT valve lever is operated (open circuit), this allows to clamp workpiece.</td>
<td>Holding so that the workpiece does not fall, then BT valve lever is operated (open circuit) and remove the workpiece.</td>
</tr>
<tr>
<td>When BT valve lever is operated (open circuit), this allows to hold pressure.</td>
<td>BT valve lever is operated (open circuit).</td>
</tr>
<tr>
<td>Repeat the setup workpiece for each face.</td>
<td>Repeat the setup workpiece for each face.</td>
</tr>
<tr>
<td>Locking action completed.</td>
<td>Release action completed.</td>
</tr>
</tbody>
</table>

※ This hydraulic power source is referencing. Hydraulic power source can be either a motor pump etc. or Kosmek CV unit.
Partial Boosting (Partial Boosting on Low Pressure Hydraulic Circuit)

Partial Boosting by Modular Model Valve

Allows to generate high pressure simply by using a continuous discharge booster. It is not necessary to provide high pressure power source only for partial actuator. There is no restrictions on the outgoing side circuit capacity due to continuous discharge. (The mounting surface of modular model is ISO4401-03.)

Partial Boosting Pressure for Fixture Side • Partial Reducing Pressure

We offer not only modular model, but also one shot booster and continuous discharge booster and reducing valve.

Model **AU**
Continuous Discharge Booster

Model **BU**
One Shot Booster

Model **BMA**
Pressure Reducing Valve
Integration of Rough Machining and Finish Machining

Controlling Clamping Force (Pressure) by Pilot Reducing Valve and Reservoir

It is possible to control clamping force when fixture pressure is disconnected from power source. This valve is useful when it is necessary to have stronger clamping force at initial machining and weaker clamping force at finish machining.

In Initial Rough Machining

High Pressure

High clamping force is needed.

Actuator

Before final machining, reduce clamping force by reducing pressure.

At Finish Machining

To Low Pressure

Workpiece deformation is avoided by reducing pressure and clamping force.

When you press the push button of BP valve, the oil in the circuit moves to the reservoir, the pressure falls to the set pressure.
Non-Leak Valve Single Action Model

Model BK

Disconnects Fixture from Power Source and Securely Holds Outgoing Side Pressure

This valve reduces setup time and the number of circuits, and saves energy securely.

What is a non-leak valve?
Non-leak valve maintains pressurized condition completely even when the fixture is detached from the power source.
It is able to disconnect from hydraulic pressure power source.

Circuit Symbol

- Each port has a built-in filter.

[Connected State]

Holds the pressure even after coupler is disconnected.

[Pressure Holding State (Disconnected)]

Pressure Holding
Advantages

- **Set Up Outside of Machine Improves Machine Operating Ratio**
 Non-leak function allows to disconnect fixture from hydraulic power source and to prepare set up outside machine. It reduces machine idle time and set up time.

- **Reduce the Number of Circuits in the Machine**
 By holding hydraulic pressure, the number of circuits inside machine for fixture can be minimized.

- **Ideal for Transferring FMS Pallets**
 Because it is able to detach the fixture from the hydraulic pressure source, this allows to move the pallet freely without concerns on the handling of the hydraulic hoses, it is perfect for FMS.

- **Energy-Saving and Safety**
 The outgoing side circuit hydraulic pressure is held unless the lever is moved. Even if you do not disconnect, you are saving energy by stopping the incoming hydraulic pressure. If a blackout occurs and the hydraulic pressure is shut off, the workpiece will not fall off due to the holding pressure.

Action Description

<table>
<thead>
<tr>
<th>Operation Sequence</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>When locking</td>
<td></td>
</tr>
<tr>
<td>Hydraulic pressure source is connected to the incoming side of non-leak valve.</td>
<td></td>
</tr>
<tr>
<td>Hydraulic Pressure ON</td>
<td></td>
</tr>
<tr>
<td>Hydraulic pressure is supplied to the outgoing side, lock action is completed.</td>
<td></td>
</tr>
<tr>
<td>Hydraulic Pressure OFF.</td>
<td>Hydraulic pressure on outgoing side is maintained by non-leak valve.</td>
</tr>
<tr>
<td>Non-leak valve is disconnected from hydraulic power source.</td>
<td></td>
</tr>
<tr>
<td>Machining and/or Transferring</td>
<td></td>
</tr>
<tr>
<td>Hydraulic pressure source is connected to the incoming side of non-leak valve.</td>
<td></td>
</tr>
<tr>
<td>When releasing</td>
<td></td>
</tr>
<tr>
<td>Release the lever on the non-leak valve.</td>
<td>By holding the lever at release position for about one second, the outgoing side pressure will be released even if the operator removes his/her hand in the middle of releasing operation.</td>
</tr>
<tr>
<td>Release action is completed.</td>
<td></td>
</tr>
</tbody>
</table>

About Release Operation

- Before Release Operation (Pressure Held Condition)
- Release operation by pulling up the lever.
- The lever is automatically lowered when the lever is released.
Model No. Indication

BK 2213 - 0

1. **Port Size**
 - 2: Corresponding to Rc1/4
 - 3: Corresponding to Rc3/8

2. **Operating Pressure Range**
 - 2: 2.0〜7.0 MPa
 - 5: 7.0〜30.0MPa

3. **Lever Position**
 - 1: Right Hand Lever (Standard)
 - 2: Left Hand Lever

4. **Design No.**
 - 3: Revision Number

5. **Piping Method**
 - CYL port position looking from P(R)
 - **Blank**: Piping Option (Rc-Thread)
 - **GA**: Left Side Gasket Option (Only for Right Handle)
 - **GB**: Bottom Gasket Option
 - **GC**: Right Side Gasket Option (Only for Left Handle)
 - **GS**: BLS, BLB and BM Valve Connecting Option

Note:
- 1. Build to order product. Feel free to ask us about delivery time when placing an order.

Specifications

<table>
<thead>
<tr>
<th>Model No.</th>
<th>Operating Pressure Range MPa</th>
<th>Withstanding Pressure MPa</th>
<th>Min. Passage Area mm²</th>
<th>Operating Temperature °C</th>
<th>Usable Fluid</th>
<th>Corresponding Coupler/Socket Form</th>
<th>Mass kg</th>
</tr>
</thead>
<tbody>
<tr>
<td>BK2213-0</td>
<td>2.0 〜 7.0</td>
<td>10.5</td>
<td>17.0</td>
<td>0 〜 70</td>
<td>General Hydraulic Oil Equivalent to ISO-VG-32</td>
<td>2HS</td>
<td>1.4</td>
</tr>
<tr>
<td>BK2513-0</td>
<td>7.0 〜 30.0</td>
<td>37.5</td>
<td>14.2</td>
<td></td>
<td></td>
<td>2HS</td>
<td></td>
</tr>
<tr>
<td>BK3213-0</td>
<td>2.0 〜 7.0</td>
<td>10.5</td>
<td>30.0</td>
<td></td>
<td></td>
<td>3HS</td>
<td></td>
</tr>
</tbody>
</table>

Note:
- 2. Shows the format of the quick coupler socket made by Nitto Kohki Co., Ltd.

Combined Model on Valves

Note:
- 1. Length of the attached mounting bolts varies depending on the combination of valves.
External Dimensions

- BK223-0 is identical but handle is on left side.

Pressure Relief Valve

CYL: Port (Outgoing Port)

- BK2: Rc1/4 Thread
- BK3: Rc3/8 Thread

- 2 - φ 9 Bolt Hole
- 2-M8 × 1.25 × 55 Bolt (included)

Release Operation

- 1 - φ 8 Bolt Hole
- 1 - φ 9 Bolt Hole

Model No.

<table>
<thead>
<tr>
<th>Model No.</th>
<th>BK213-0</th>
<th>BK3213-0</th>
</tr>
</thead>
<tbody>
<tr>
<td>PIR Port</td>
<td>2HP</td>
<td>3HP</td>
</tr>
<tr>
<td>A</td>
<td>135</td>
<td>144</td>
</tr>
<tr>
<td>B</td>
<td>39</td>
<td>46</td>
</tr>
<tr>
<td>C</td>
<td>28</td>
<td>33</td>
</tr>
</tbody>
</table>

Note: ※3. Quick coupler model number made by Nitto Koki.

- BK213-0G

- Please refer to BK213-0 for other dimensions.

- BK223-0GC

- Please refer to BK213-0 for other dimensions.

- BK213-0GB

- Please refer to BK213-0 for other dimensions.

- Note:
 - ※4. Roughness of mounting surface (O-ring seal surface) should be 6.35 or less.
Non-Leak Valve Double Action Model

Model BEQ

Outgoing side hydraulic pressure (A2) is maintained by pilot check method.
This valve reduces set up time and the number of circuits, and saves energy securely.

- Non-Leak Valve (Double Action Model)

A non-leak valve (double action model) is equipped with a non-leak function. Unless the hydraulic pressure is supplied to B1 port, A2 port side is held even if the hydraulic power source is cut off with hydraulic pressure.

Fall prevention: In case of a blackout, it is possible to separate the hydraulic power source from fixture because the actuator holds pressure inside.

【Connected State】

Holds the pressure even after coupler is disconnected.

【Pressure Holding State (Disconnected)】

Hydraulic Pressure ON 10 MPa

Hydraulic Pressure OFF 0 MPa

Circuit Symbol

\[
\begin{align*}
\text{Incoming Port} & \quad \text{Outgoing Port} \\
\text{A1 Port} & \quad \text{A2 Port} \\
\text{B1 Port} & \quad \text{B2 Port}
\end{align*}
\]

※ Filter is built in A1, A2.
Operation Sequence

<table>
<thead>
<tr>
<th>Action</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Release</td>
<td>Hydraulic pressure is ON at A1 port side. (hydraulic pressure is OFF at B1 port side.)</td>
</tr>
<tr>
<td></td>
<td>Actuator is locked with hydraulic pressure when supplied to the A2 port side. (Even if the hydraulic pressure is OFF, locking pressure is held.)</td>
</tr>
<tr>
<td></td>
<td>Hydraulic pressure supply is OFF.</td>
</tr>
<tr>
<td></td>
<td>Separating A1/B1 port from hydraulic power source.</td>
</tr>
<tr>
<td>Machining and/or Transferring</td>
<td></td>
</tr>
<tr>
<td>Clamping</td>
<td>Connecting A1/B1 port to hydraulic power source.</td>
</tr>
<tr>
<td>Pressure Holding</td>
<td>When hydraulic pressure is ON (A1 port side hydraulic pressure OFF) at B1 port side, pilot check valve is open and the oil from A2 port (lock side) goes back to the tank.</td>
</tr>
<tr>
<td></td>
<td>Release action completed.</td>
</tr>
<tr>
<td>In Case of an emergency</td>
<td>Hydraulic power source is OFF due to a blackout.</td>
</tr>
<tr>
<td></td>
<td>The pilot check valve, lock side pressure (A2 port) will maintain the pressure as it was before the blackout.</td>
</tr>
</tbody>
</table>
Model No. Indication

BEQ02 2 0 - 0

1 Operating Pressure Range

- 2: 2.0~7.0MPa
- 5: 7.0~30.0MPa

2 Design No.

- 0: Revision Number

Specifications

<table>
<thead>
<tr>
<th>Model No.</th>
<th>BEQ0220-0</th>
<th>BEQ0250-0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operating Pressure Range MPa</td>
<td>1.0 ~ 7.0</td>
<td>7.0 ~ 30.0</td>
</tr>
<tr>
<td>Withstanding Pressure MPa</td>
<td>10.5</td>
<td>37.5</td>
</tr>
<tr>
<td>Cracking Pressure MPa</td>
<td>0.07</td>
<td></td>
</tr>
<tr>
<td>Pilot Pressure MPa</td>
<td>A2 Holding Pressure / 5.5 + 0.3 or more</td>
<td></td>
</tr>
<tr>
<td>Min. Passage Area mm²</td>
<td>14.3</td>
<td></td>
</tr>
<tr>
<td>Operating Temperature °C</td>
<td>0 ~ 70</td>
<td></td>
</tr>
<tr>
<td>Usable Fluid</td>
<td>General Hydraulic Oil Equivalent to ISO VG-32</td>
<td></td>
</tr>
<tr>
<td>Corresponding Coupler/Socket Form</td>
<td>2HS</td>
<td></td>
</tr>
<tr>
<td>Mass kg</td>
<td>1.3</td>
<td></td>
</tr>
</tbody>
</table>

Note: *1. Quick Coupler model number made by Nitto Koki.

External Dimensions

![Diagram of BEQ02 2 0 - 0]

Note: *2. Quick Coupler model number made by Nitto Koki.
Notes:

1. Quick Coupler model number made by Nitto Koki.
2. Quick Coupler: 2HP (as per the diagram, the model number is 2HP, not 2HP2).
3. Roughness of mounting surface (O-ring seal surface) should be 6.35 or less.
Non-Leak Stop Valve
(Manual Switching Valve)

Model BT

Manual Switching Valve that can hold pressure
Simple Operation

What is a non-leak stop valve?
The stop valve is operated by a manual operation lever. disconnected closed hydraulic circuit holds pressure at the outgoing side.

Multiple workpieces can be loaded and loaded by preventing the workpiece fall by during the clamping · unclamping operation per workpiece.
When the circuit is closed, the outgoing side pressure is held and will prevent workpiece from falling.

Application Examples
Clamping operation is possible with each workpiece.
Model No. Indication

BT22 210 - 0

1 Operating Pressure Range

2 : 2.0 ~ 7.0 MPa
5 : 7.0 ~ 30.0 MPa

2 Design No.

0 : Revision Number

Specifications

<table>
<thead>
<tr>
<th>Model No.</th>
<th>Operating Pressure Range (MPa)</th>
<th>Withstanding Pressure (MPa)</th>
<th>Min. Passage Area (mm²)</th>
<th>Operating Temperature (°C)</th>
<th>Usable Fluid</th>
<th>Mass (kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>BT2210-0</td>
<td>2.0 ~ 7.0</td>
<td>10.5</td>
<td>15.9</td>
<td>0 ~ 70</td>
<td>General Hydraulic Oil Equivalent to ISO-VG 32</td>
<td>1.4</td>
</tr>
<tr>
<td>BT2510-0</td>
<td>7.0 ~ 30.0</td>
<td>37.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

External Dimensions

- Pressure Relief Valve
- 2 x 9 Bolt Hole
- 2-M8 x 1.25 x 55 Bolt (Included)
- CYL. Port Rc1/4 Thread
- φ 14 Spot Facing Depth 11
- φ 9 Bolt Hole
- (for M8 x 1.25 x 55 bolt)
Sequence Valve

Model BLS
Model BLG

Activates multiple actuators in sequence, and reduces the number of ports required.
It is able to control locating and clamping workpiece in sequence in one system.

What is a sequence valve?
This valve operates multiple actuators in sequence to perform positioning and clamping.

When incoming port pressure reaches the sequence setting pressure value, the pressure is supplied to outgoing port.

Circuit Symbol

In each port has a built-in filter.

<table>
<thead>
<tr>
<th>Classification</th>
<th>Sequence Valve</th>
<th>Compact Sequence Valve</th>
</tr>
</thead>
<tbody>
<tr>
<td>Actuating Pressure Range</td>
<td>1～4MPa</td>
<td>1～6MPa</td>
</tr>
<tr>
<td>Operating Pressure Range</td>
<td>3～8MPa</td>
<td>5～8MPa</td>
</tr>
<tr>
<td></td>
<td>8～20MPa</td>
<td>6～18MPa</td>
</tr>
<tr>
<td></td>
<td>2～30MPa</td>
<td>6～35MPa</td>
</tr>
</tbody>
</table>

Piping Method

Model BLS → P.1111
Model BLG → P.1113

Piping Option
Manifold Option
BK Connecting Option
BK/BLB Connecting Option

Double Gasket Option
Action Description

Images

Circuit Example

Sequence Valve

Operation Sequence	Remarks
When locking
Hydraulic pressure is ON. |
Actuator ① works. |
The pressure reaches the set value for sequence operating pressure. | Provide a difference of more than 1MPa between operating and setting pressure. |
Sequence valve port is open. |
Actuator ② works. |
Locking action completed. |
machining process

When releasing
Hydraulic pressure is OFF. |
The actuators ①/② are released at the same time. | When incoming side pressure decreases, internal check valve opens. | Release action completed.

Adjustable Set Pressure

Set Hydraulic Pressure Change per Rotation | (MPa/Rev)

<table>
<thead>
<tr>
<th>Model No.</th>
<th>BLS/31</th>
<th>BLS/51</th>
<th>BLS/71</th>
<th>BLG2830</th>
<th>BLG2860</th>
</tr>
</thead>
<tbody>
<tr>
<td>Set Pressure Change per Rotation (Reference)</td>
<td>0.7</td>
<td>1.0</td>
<td>2.6</td>
<td>1.0</td>
<td>2.8</td>
</tr>
</tbody>
</table>

Notes:
1. The set pressure value is set according to the model code.
2. Pressure increases by turning clockwise and decreases by turning anti-clockwise.
Model No. Indication

BLS 251-0 (5.0MPa)

1 Port Size

- **2**: Corresponding to Rc1/4
- **3**: Corresponding to Rc3/8

2 Operating Pressure Range

- **3**: 1.0~4.0 MPa
- **5**: 3.0~8.0 MPa
- **7**: 8.0~20.0 MPa

3 Design No.

- **1**: Revision Number

Notes:
- ※1. Build to order product. Feel free to ask us about delivery time when placing an order.
- ※2. W option only available with 2 : Rc1/4 port.

Specifications

<table>
<thead>
<tr>
<th>Model No.</th>
<th>BLS 31-0</th>
<th>BLS 51-0</th>
<th>BLS 71-0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Actuating Pressure Range</td>
<td>1.0~4.0</td>
<td>3.0~8.0</td>
<td>8.0~20.0</td>
</tr>
<tr>
<td>Operating Pressure Range</td>
<td>2.0~30.0</td>
<td>37.5</td>
<td></td>
</tr>
<tr>
<td>Withstanding Pressure</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Adjusting Screw Turn Ratio</td>
<td>0.7</td>
<td>1.0</td>
<td>2.6</td>
</tr>
<tr>
<td>Cracking Pressure</td>
<td>0.01</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Min. Passage Area</td>
<td></td>
<td></td>
<td>P(R) → CYL.: 7 / CYL. → P(R): 27</td>
</tr>
<tr>
<td>Operating Temperature</td>
<td></td>
<td></td>
<td>0~70</td>
</tr>
<tr>
<td>Usable Fluid</td>
<td>General Hydraulic Oil Equivalent to ISO-VG-32</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mass</td>
<td></td>
<td>1.2</td>
<td></td>
</tr>
</tbody>
</table>

Note: 1. If the flow volume of the incoming pressure side is too much, there is a possibility that the proper sequential procedures would not work. In this instance, use a flow control valve to adjust flow volume from the pressure source.

Example of a Combination of BLS and BLB

Operation Sequence (When clamping)
1. Supply hydraulic pressure.
2. The hydraulic pressure passing through the BLB, starts the support action of Work Support. At this time, hydraulic pressure does not reach the actuator side because of BLS.
3. When hydraulic pressure inside the system has exceeded the set pressure of BLS, the hydraulic pressure is supplied to the actuator to lock a workpiece.

Operation Sequence (When releasing)
1. Shut off hydraulic pressure supply.
2. Pressure reduction of BLS/BLG starts right after the hydraulic pressure supply is shut off and the actuator retracts to release the pressure.
3. BLB reduces hydraulic pressure inside Work Support in proportion to the pressure difference (1:20) between the incoming side (P port) pressure drop and the outgoing side (cylinder port) pressure. Therefore, workpiece and fixture damage due to the remaining pressure can be prevented because the workpiece is released after the actuator thrust becomes zero.

BLB/BLG
When the P port (incoming pressure) is pressurized to exceed the set up pressure of BLS/BLG, the valve is opened, and hydraulic pressure is supplied to the cylinder port (outgoing pressure). When the P port (incoming pressure) is reduced to approximately 1/20 times the cylinder port (outgoing pressure), reduction of the outgoing pressure starts and the outgoing pressure is reduced in proportion to the incoming pressure.
External Dimensions

BLS:□□1-0□

- **2- φ 9 Bolt Hole**
- **Sequence Pressure Adjusting Thread**
- **Lock Nut M8 × 1.25**

CYL: Port (Outgoing Pressure)
- BLS2: Rc1/4 Thread
- BLS3: Rc3/8 Thread

BLS:□□1-0G□

- **2- φ 9 Bolt Hole**
- **Sequence Pressure Adjusting Thread**
- **Lock Nut M8 × 1.25**

CYL: Port (Outgoing Pressure)
- BLS2: Rc1/4 Thread
- BLS3: Rc3/8 Thread

BLS:□□1-0W□

- **2-M8 × 1.25 × 100 Bolt (Included)**

BLS:□□1-O□

- **2-M8 × 1.25 × 55 Bolt (Included)**

BLS2:□□1-0□

- **2-M8 × 1.25 × 145 Bolt (Included)**

BLS2:□□1-0□

- **2-M8 × 1.25 × 55 Bolt (Included)**

BLS2:□□1-0W□

- **2-M8 × 1.25 × 145 Bolt (Included)**

BLS2:□□1-OW□

Notes:

- **4.** The BK combination option uses M8 × 1.25 × 100 bolts (provided). But without M8 × 1.25 × 55 bolts and M8 × 1.25 × 145 bolts.
 1. BK is sold separately. Prepare it separately.

- **5.** The BK and BLB combination option uses M8 × 1.25 × 145 bolts (provided). But without M8 × 1.25 × 55 bolts and M8 × 1.25 × 100 bolts.
 1. BK/BLB are sold separately. Prepare them separately.
Model No. Indication

BLG28 3 0 - 0 G (5.0MPa)

1 Set Value for Sequence Operating Pressure

3 : 1.0~6.0 MPa
6 : 5.0~18.0 MPa

2 Design No.

0 : Revision Number

3 Piping Method ※1

G : Gasket Option

Note : ※1. Hydraulic connecting method is only G option (gasket). Select BLS if piping option is necessary.

4 Set Pressure (Set Value for Sequence Operating Pressure)

Please indicate the set pressure when ordering
(Please inform us with proper unit symbols.)

※ Provide a difference of more than 1MPa between operating and setting pressure.
※ When using multiple BLG sequence valves in a parallel fashion, provide each set pressure with a pressure difference more than 1MPa.

Entry Example

At 5MPa → (5.0MPa)
At 3.5MPa → (3.5MPa)
At 700PSI → (700PSI)

Blank : Pressure Setting Free Option

※ If set pressure is determined by customer, indicate it within "Blank".
※ When shipping, the pressure is set as the minimum pressure indicated in the specification "Actuating Pressure Range".
※ For pressure adjustment, please refer to "Sequence Valve Pressure Setting Procedure" included along with the product and "Adjustable Set Pressure" on P.1110.

Specifications

<table>
<thead>
<tr>
<th>Model No.</th>
<th>BLG2830-0G</th>
<th>BLG2860-0G</th>
</tr>
</thead>
<tbody>
<tr>
<td>Actuating Pressure Range</td>
<td>1.0 ~ 6.0</td>
<td>5.0 ~ 18.0</td>
</tr>
<tr>
<td>Operating Pressure Range</td>
<td>2.0 ~ 35.0</td>
<td>6.0 ~ 35.0</td>
</tr>
<tr>
<td>Adjusting Screw Turn Ratio</td>
<td>1.0</td>
<td>2.8</td>
</tr>
<tr>
<td>Cracking Pressure</td>
<td>MPa</td>
<td>0.01</td>
</tr>
<tr>
<td>Min. Passage Area</td>
<td>mm²</td>
<td>P(R) → CYL : 8.7 / CYL → P(R) : 10.2</td>
</tr>
<tr>
<td>Operating Temperature</td>
<td>°C</td>
<td>0 ~ 70</td>
</tr>
<tr>
<td>Usable Fluid</td>
<td>General Hydraulic Oil Equivalent to ISO VG 32</td>
<td></td>
</tr>
<tr>
<td>Mass</td>
<td>kg</td>
<td>0.6</td>
</tr>
</tbody>
</table>

Notes : 1. If the flow volume of the incoming pressure side is too much, there is a possibility that the proper sequential procedures would not work.
In this instance, use a flow control valve to adjust flow volume from the pressure source.
2. Please refer to BLS page for the example of a combination of BLG and BLB.
External Dimensions

BLG28-0-0G

2 - ø6.5 Bolt Hole
2 - M6 × 1 × 35 Bolt (Included)

CYL Port (Outgoing Pressure)
O-ring: 1B8P8 (Included)

P(R) Port (Incoming Pressure)
O-ring: 1B8P8 (Included)

Sequence Pressure Adjusting Thread
Lock Nut M8 × 1.25

Note:
※2. Roughness of mounting surface (O-ring seal surface) should be 6.35 or less.

Mounting Surface Machining Drawing

2 - ø6 or less
(Hydraulic Connecting Port provided by customer)

2 - M6 × 1 × 35 Bolt Depth 11 or more
Pressure Balance Valve

Model BLB

A pressure balance valve is actuated in sequence to prevent workpiece deformation

This valve prevents the deformation of workpiece when the work support releases.

What is a pressure balance valve?

This valve prevents deformation of a workpiece during unclamping sequence. This will be useful when using work support and clamp actuator in opposite position.

When releasing, the incoming side pressure reduces around 1/20 of outgoing side pressure. Then outgoing side pressure start to reduce.

Circuit Symbol

※ CYL. port comes with a built-in filter.
Since a filter is not built in the P(R) port, please sufficiently perform flushing of piping and fitting to prevent foreign substances such as cutting chips from entering the circuit.
Action Description

Images

Circuit Example

Operation Sequence	Remarks
When locking | Hydraulic pressure is ON.
The actuator and work support operates almost at the same time. Locking action completed.

Machining process

When releasing | Hydraulic pressure is OFF.
Actuator operates the release action.
The pressure balance valve circuit opens. Work Support is released. Release action completed.

When incoming side pressure reduces up to around 1/20 of outgoing side pressure, circuit opens.
Model No. Indication

BLB50 0 - 0

1 **Design No.**

0 : Revision Number

2 **Piping Method**

Blank : Piping Option (Rc Thread)
 (Standard)

W : BK/BLS Connecting Option

Specifications

<table>
<thead>
<tr>
<th>Model No.</th>
<th>BLB500-0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operating Pressure Range</td>
<td>MPa</td>
</tr>
<tr>
<td>Withstanding Pressure</td>
<td>MPa</td>
</tr>
<tr>
<td>Min. Passage Area</td>
<td>mm²</td>
</tr>
<tr>
<td>Operating Temperature</td>
<td>°C</td>
</tr>
<tr>
<td>Usable Fluid</td>
<td>General Hydraulic Oil Equivalent to ISO VG-32</td>
</tr>
<tr>
<td>Mass</td>
<td>kg</td>
</tr>
</tbody>
</table>

Note : 1. Please refer to BLS page for the example of a combination of BLG/BLS and BLB.

External Dimensions

Notes:

1. The BK and BLB combination type uses M8 × 1.25 × 145 bolts (provided).
 But without M8 × 1.25 × 55 bolts and M8 × 1.25 × 100 bolts.
2. BK and BLS are not included. Prepare them separately.
<table>
<thead>
<tr>
<th>Features</th>
<th>Action Description</th>
<th>Model No. Indication Specifications</th>
<th>External Dimensions</th>
</tr>
</thead>
<tbody>
<tr>
<td>High-Power Series</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pneumatic Series</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hydraulic Series</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Valve / Coupler Hyradic Unit</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Manual Operation Accessories</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cautions / Others</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Air Sequence Valve
- BWD

Hydraulic Non-Leak Coupler
- BGA/RGB
- BGC/RGD
- BGP/RGB
- BPP/BSN
- BNP/BNB
- BPP/BJB
- BPP/BSF

Auto Coupler
- JVA/JVB
- JVC/JVD
- JVE/JVF
- JMA/JNB
- JNC/JND
- JLP/JLS

Rotary Joint
- JR

Hydraulic Valve
- BK
- BEQ
- BT
- BLS/BLG
- FLM
- JSS/JS
- JKA/JKB
- BMA/BMG
- AU/AU-M
- BU
- BP/JPB
- BK
- BEP/BSP
- BH
- BC

Air Hydraulic Unit
- CV
- CK
- CP/CPB
- CPC/CQC
- CB
- CC
- AB/AB-V
- AC/AC-V
Accumulator

Model JSS
Model JS

Spring Accumulator to absorb pressure fluctuation of a fixture circuit disconnected from a pressure source

Maintenance-Free Spring Accumulator

What is an accumulator?

When a fixture is disconnected from the hydraulic pressure source (closed circuit), with the change in volume of hydraulic fluid due to temperature changes, there will be pressure increase and/or decrease.

Accumulator avoids damage and deformation of a machine and workpiece caused by pressure increase, and falling of workpiece caused by pressure decrease.

Circuit Symbol

Since a filter is not built in each port, please sufficiently perform flushing of piping and fitting to prevent foreign substances such as cutting chips from entering the circuit.

<table>
<thead>
<tr>
<th>Division</th>
<th>Spring Accumulator for Low Pressure</th>
<th>Spring Accumulator for High Pressure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standard Operating Pressure</td>
<td>2/3/4/5/6/7 MPa</td>
<td>14/25 MPa</td>
</tr>
</tbody>
</table>
Action Description

The Image of an Internal Accumulator

This is a simplified drawing. The actual part components may be different.

<table>
<thead>
<tr>
<th>Temperature Change</th>
<th>With Accumulator</th>
<th>No Accumulator</th>
</tr>
</thead>
<tbody>
<tr>
<td>Increase in Oil Temperature</td>
<td>When hydraulic pressure increases as oil temperature rises, the piston will be pushed to absorb the pressure increase.</td>
<td>Hydraulic pressure increases as oil temperature rises. Abnormal high pressure will damage a machine and/or deform a workpiece.</td>
</tr>
<tr>
<td>Decrease in Oil Temperature</td>
<td>When hydraulic pressure decreases as oil temperature drops, the piston will be pushed by spring to absorb the pressure decrease.</td>
<td>Hydraulic pressure decreases as oil temperature drops. This will cause low machining quality and/or workpiece detachment.</td>
</tr>
</tbody>
</table>

- **Influence of Temperature Change on Hydraulic Circuit**

Hydraulic pressure of sealed circuit disconnected from hydraulic source by non-leak valve, etc. is significantly affected by ambient temperature change and supply oil temperature change. (Especially when using a motor pump, high temperature oil is supplied and the temperature rapidly decreases after sealing.) Although it differs depending on the amount of air mixed, product, piping/hose expansion and temperature condition, etc., Kosmek standard is as shown below regardless of the amount of oil contained.

\[
\frac{0.69 \text{ MPa}}{\text{°C}} \quad (0.69 \text{ MPa of Pressure Fluctuation by 1°C Temperature Change})
\]
Model No. Indication

JSS 502 0 -

1. Standard Operating Pressure

<p>| | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>2.0MPa</td>
<td>3.0MPa</td>
<td>4.0MPa</td>
<td>5.0MPa</td>
<td>6.0MPa</td>
</tr>
</tbody>
</table>

2. Amount of Discharge Oil

<p>| | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>02</td>
<td>2.5cm³</td>
<td>5.0cm³</td>
<td>10.0cm³</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

3. Design No.

<p>| | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Revision Number</td>
</tr>
</tbody>
</table>

4. Mounting Direction

<p>| | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>H</td>
<td>V</td>
<td></td>
<td></td>
<td></td>
<td>Horizontal Mounting</td>
</tr>
</tbody>
</table>

5. Piping Method

<p>| | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>S</td>
<td>G</td>
<td>GC</td>
<td>GS</td>
<td>Piping Option (G Thread)</td>
</tr>
</tbody>
</table>

6. Piping Direction

For V: Vertical Mounting, 6 Piping Direction is "Blank".

- A: Top Piping
- B: Side Piping

Specifications

<table>
<thead>
<tr>
<th>Model No.</th>
<th>JSS2020</th>
<th>JSS2050</th>
<th>JSS2100</th>
<th>JSS3020</th>
<th>JSS3050</th>
<th>JSS3100</th>
<th>JSS4020</th>
<th>JSS4050</th>
<th>JSS4100</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standard Operating Pressure MPa</td>
<td>2.0</td>
<td>3.0</td>
<td>4.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Withstanding Pressure MPa</td>
<td>14.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Discharge Oil Capacity cm³</td>
<td>2.5</td>
<td>5.0</td>
<td>10.0</td>
<td>2.5</td>
<td>5.0</td>
<td>10.0</td>
<td>2.5</td>
<td>5.0</td>
<td>10.0</td>
</tr>
<tr>
<td>Absorbing Oil Capacity cm³</td>
<td>1.0</td>
<td>2.0</td>
<td>4.0</td>
<td>1.0</td>
<td>2.0</td>
<td>4.0</td>
<td>1.0</td>
<td>2.0</td>
<td>4.0</td>
</tr>
<tr>
<td>Compression Factor (β) MPa/cm³</td>
<td>0.40</td>
<td>0.31</td>
<td>0.16</td>
<td>0.40</td>
<td>0.33</td>
<td>0.17</td>
<td>0.49</td>
<td>0.37</td>
<td>0.18</td>
</tr>
<tr>
<td>Operating Temperature °C</td>
<td>0 ~ 70</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Usable Fluid</td>
<td>General Hydraulic Oil Equivalent to ISO-VG-32</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mass kg</td>
<td>0.8</td>
<td>1.0</td>
<td>1.7</td>
<td>0.8</td>
<td>1.1</td>
<td>1.7</td>
<td>0.8</td>
<td>1.1</td>
<td>2.0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Model No.</th>
<th>JSS5020</th>
<th>JSS5050</th>
<th>JSS5100</th>
<th>JSS6020</th>
<th>JSS6050</th>
<th>JSS6100</th>
<th>JSS7020</th>
<th>JSS7050</th>
<th>JSS7100</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standard Operating Pressure MPa</td>
<td>5.0</td>
<td>6.0</td>
<td>7.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Withstanding Pressure MPa</td>
<td>14.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Discharge Oil Capacity cm³</td>
<td>2.5</td>
<td>5.0</td>
<td>10.0</td>
<td>2.5</td>
<td>5.0</td>
<td>10.0</td>
<td>2.5</td>
<td>5.0</td>
<td>10.0</td>
</tr>
<tr>
<td>Absorbing Oil Capacity cm³</td>
<td>1.0</td>
<td>2.0</td>
<td>4.0</td>
<td>1.0</td>
<td>2.0</td>
<td>4.0</td>
<td>1.0</td>
<td>2.0</td>
<td>4.0</td>
</tr>
<tr>
<td>Compression Factor (β) MPa/cm³</td>
<td>0.43</td>
<td>0.34</td>
<td>0.17</td>
<td>0.43</td>
<td>0.36</td>
<td>0.21</td>
<td>0.48</td>
<td>0.40</td>
<td>0.27</td>
</tr>
<tr>
<td>Operating Temperature °C</td>
<td>0 ~ 70</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Usable Fluid</td>
<td>General Hydraulic Oil Equivalent to ISO-VG-32</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mass kg</td>
<td>1.4</td>
<td>1.8</td>
<td>2.9</td>
<td>1.5</td>
<td>1.9</td>
<td>3.0</td>
<td>1.7</td>
<td>2.0</td>
<td>3.4</td>
</tr>
</tbody>
</table>

Note: 1. Compression factor (β) means a pressure change (MPa) per 1cm³ charge in oil volume.
Performance Curve

<table>
<thead>
<tr>
<th>JSS20</th>
<th>JSS40</th>
<th>JSS100</th>
</tr>
</thead>
<tbody>
<tr>
<td>Effective Temperature Range (°C) by Circuit Capacity (V)</td>
<td>Effective Temperature Range (°C) by Circuit Capacity (V)</td>
<td>Effective Temperature Range (°C) by Circuit Capacity (V)</td>
</tr>
<tr>
<td>(V=100cm³)</td>
<td>(V=200cm³)</td>
<td>(V=400cm³)</td>
</tr>
<tr>
<td>-11.25</td>
<td>-11.25</td>
<td>-12.5</td>
</tr>
<tr>
<td>-6.25</td>
<td>-6.25</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>6.25</td>
<td>12.5</td>
</tr>
</tbody>
</table>

How to read the Characteristic Diagram

- **Requirements (Reference)**
 - Clamp Used: LHA0650×4 units (Lock Cylinder Capacity for each: 26.7cm³)
 - Piping: Inner Diameter ø 6×2mm (Pipe Capacity per 1m: 28.3cm³)
 - Valve Capacity: 20cm³
 - Temperature Change: ΔT = -20°C
 - Operating Pressure: P = 4.0MPa
 - Thermal Expansion Coefficient: α = 8×10⁻⁴

- **Selection Method**
 1. Calculate Fixture Circuit Capacity (V)

 Clamp Capacity + Pipe Capacity + Valve Capacity

 \[V = (26.7 \times 4) + (28.3 \times 2) + 20 = 183.4 \text{ cm}³ \]

 2. Calculate Change in Capacity (ΔV)

 Fixture Circuit Capacity (V) × Thermal Expansion Coefficient (α) × Amount of Temperature Change (ΔT)

 \[ΔV = 183.4 \times (8 \times 10⁻⁴) \times (-20) = -2.93 \text{ cm}³ \]

 3. Select Cumulator Model

 Operating Pressure (P) = 4.0MPa select JSS40

 Change in Capacity (ΔV) = -2.93cm³ select JSS4050.

 (If the required discharge capacity is greater than shown on the graph, select larger cumulator \([e.g., JSS4100]\).)

 4. Check the Accumulator Characteristics (Graph on the right)

 Pressure after Temperature Change (-20°C): 2.92MPa

 Residual Oil Discharge Margin: 2.07cm³

 5. Select the mounting direction, piping method and piping direction.

Note:

1. When making your selection, calculate tolerance for the oil capacity taking the spring force deviation into consideration.

 \(\text{Approximate Amount of Spare Oil: JSS200: -0.5cm³, JSS4050: -1.0cm³, JSS100: -1.5cm³} \)
External Dimensions

JS:020-H, JS:050-H

Indicator #1

2- φ6 Bolt Hole
2-Mounting Bolt X (included)

Hydraulic Port
When JS:020-HCA/HGCA is used: G 1/8 Thread
When JS:050-HCA/HGCA is used: G 1/8 Thread
When JS:020-HSA/HGSA is used: G 1/4 Thread
When JS:050-HSA/HGSA is used: Rc 1/4 Thread

Hydraulic Gasket Port O-ring: 1BP8 (Included)
Only with JS:020/JS:050-HG/HGC/HGS

Machining Dimensions of Mounting Area

JS:000-H

MS × 0.8 Thread Depth 8 or more
(The number of holes needed depends on model used.)

JSS/JSS/JS4: 4M4 × 0.7 Thread Depth 9 or more
JSS/JSS/JSS7: 4MS × 0.8 Thread Depth 11 or more
External Dimensions and Machining Dimensions for Mounting (mm)

<table>
<thead>
<tr>
<th>Model No.</th>
<th>JSS2020</th>
<th>JSS3020</th>
<th>JSS4020</th>
<th>JSS2050</th>
<th>JSS3050</th>
<th>JSS4050</th>
<th>JSS2100</th>
<th>JSS3100</th>
<th>JSS4100</th>
<th>JSS5020</th>
<th>JSS5050</th>
<th>JSS6020</th>
<th>JSS6050</th>
<th>JSS7020</th>
<th>JSS7050</th>
<th>JSS7100</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>98.5</td>
<td>136.5</td>
<td>241.5</td>
<td>128.5</td>
<td>164.5</td>
<td>275.5</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>40</td>
<td>40</td>
<td>40</td>
<td>50</td>
<td>50</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>C1</td>
<td>36</td>
<td>36</td>
<td>38</td>
<td>46</td>
<td>46</td>
<td>46</td>
<td></td>
</tr>
<tr>
<td>C2</td>
<td>-</td>
<td>-</td>
<td>36</td>
<td>-</td>
<td>-</td>
<td>46</td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>43</td>
<td>55</td>
<td>79</td>
<td>43</td>
<td>55</td>
<td>79</td>
<td></td>
</tr>
<tr>
<td>E</td>
<td>55.5</td>
<td>81.5</td>
<td>162.5</td>
<td>85.5</td>
<td>109.5</td>
<td>196.5</td>
<td></td>
</tr>
<tr>
<td>F</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>G 15</td>
<td>15</td>
<td>27</td>
<td>49</td>
<td>15</td>
<td>27</td>
<td>49</td>
<td></td>
</tr>
<tr>
<td>H1</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>H2</td>
<td>-</td>
<td>-</td>
<td>34</td>
<td>-</td>
<td>-</td>
<td>34</td>
<td></td>
</tr>
<tr>
<td>J</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>25</td>
<td>25</td>
<td>25</td>
<td></td>
</tr>
<tr>
<td>K</td>
<td>32</td>
<td>32</td>
<td>32</td>
<td>40</td>
<td>40</td>
<td>40</td>
<td></td>
</tr>
<tr>
<td>R</td>
<td>4.5</td>
<td>4.5</td>
<td>4.5</td>
<td>5.5</td>
<td>5.5</td>
<td>5.5</td>
<td></td>
</tr>
<tr>
<td>S</td>
<td>34</td>
<td>34</td>
<td>34</td>
<td>44</td>
<td>44</td>
<td>44</td>
<td></td>
</tr>
<tr>
<td>Bolt X</td>
<td>M5 × 0.8 × 40</td>
<td>M5 × 0.8 × 40</td>
<td>M5 × 0.8 × 40</td>
<td>M5 × 0.8 × 50</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bolt Y</td>
<td>M4 × 0.7 × 50</td>
<td>M4 × 0.7 × 50</td>
<td>M4 × 0.7 × 50</td>
<td>M4 × 0.7 × 85</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes:
1. Indicator extends proportionally to pressure. Be aware not to interfere with other devices of max. extension dimension when designing.
2. Roughness of mounting surface (O-ring seal surface) of G (Gasket option) should be 6.35 or better.
3. Do not disassemble. Components include pressurized spring parts. It is dangerous to disassemble.
Model No. Indication

JS A711 - 0A

1. **Mounting Direction**
 - A : Horizontal Mounting
 - B : Vertical Mounting

2. **Standard Operating Pressure**
 - 5 : 14.0MPa
 - 7 : 25.0MPa

3. **Amount of Discharge Oil**
 - 1 : 2.2cm³
 - 2 : 4.4cm³

4. **Design No.**
 - 1 : Revision Number

5. **Piping Method**
 - A : Front Side Piping Option (Rc1/4 Thread) ※1
 - B : Top Surface Piping Option (Rc1/4 Thread) ※1
 - C : Side Surface Piping Option (Rc1/4 Thread)
 - G : Gasket Option

※1. When choosing Mounting Direction B: Vertical Mounting, A: Front Side Piping Option and B: Top Surface Piping Option cannot be selected.

Specifications

<table>
<thead>
<tr>
<th>Model No.</th>
<th>JS A511</th>
<th>JS A521</th>
<th>JS A711</th>
<th>JS A721</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standard Operating Pressure MPa</td>
<td>14.0</td>
<td>25.0</td>
<td>14.0</td>
<td>25.0</td>
</tr>
<tr>
<td>Withstanding Pressure MPa</td>
<td>25.0</td>
<td>37.5</td>
<td>25.0</td>
<td>37.5</td>
</tr>
<tr>
<td>Discharge Oil Capacity cm³</td>
<td>2.2</td>
<td>4.4</td>
<td>2.2</td>
<td>4.4</td>
</tr>
<tr>
<td>Absorbing Oil Capacity cm³</td>
<td>1.0</td>
<td>2.0</td>
<td>1.0</td>
<td>2.0</td>
</tr>
<tr>
<td>Compression Factor (β) MPa/cm³</td>
<td>1.65</td>
<td>1.19</td>
<td>2.24</td>
<td>1.93</td>
</tr>
<tr>
<td>Operating Temperature ℃</td>
<td>0 ~ 70</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Usable Fluid</td>
<td>General Hydraulic Oil Equivalent to ISO-VG-32</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mass kg</td>
<td>3.0</td>
<td>4.3</td>
<td>5.4</td>
<td>5.9</td>
</tr>
</tbody>
</table>

Note : ※1. Compression factor (β) means a pressure change (MPa) per 1cm³ charge in oil volume.
Performance Curve

 Effective Temperature Range (°C) by Circuit Capacity (V)

- JS511

Effective Temperature Range (°C) by Circuit Capacity (V)

- JS711

Effective Temperature Range (°C) by Circuit Capacity (V)

- JS521

Effective Temperature Range (°C) by Circuit Capacity (V)

- JS721

How to read the Characteristic Diagram

Please refer to the how to read the characteristic diagram on JSS page.
External Dimensions

JS-1-0A/B/C/G

Indicator *1*

Piping Method: B
Hydraulic Port
Rc1/4 Thread

Piping Method: C
Hydraulic Port
2-Rc1/4 Thread (Same Position on Opposite Side)

Piping Method: G
Hydraulic Gasket Port
O-ring: 1BP8 (Included)

JSB-1-0C/G

Indicator *1*

Piping Method: B
Hydraulic Port
Rc1/4 Thread

Piping Method: C
Hydraulic Port
2-S Mounting Bolt (Included)

Piping Method: G
Hydraulic Gasket Port
O-ring: 1BP8 (Included)

4-R

4-T Mounting Bolt (Included)
External Dimensions

<table>
<thead>
<tr>
<th>Model No.</th>
<th>JS511</th>
<th>JS521</th>
<th>JS711</th>
<th>JS721</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>155.5</td>
<td>187.5</td>
<td>210.5</td>
<td>236</td>
</tr>
<tr>
<td>B</td>
<td>65</td>
<td></td>
<td>70</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>32.5</td>
<td></td>
<td>35</td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>58.5</td>
<td></td>
<td>68.5</td>
<td></td>
</tr>
<tr>
<td>d</td>
<td>8</td>
<td></td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>E</td>
<td>82</td>
<td></td>
<td>84</td>
<td></td>
</tr>
<tr>
<td>F</td>
<td>73.5</td>
<td>105.5</td>
<td>126.5</td>
<td>152</td>
</tr>
<tr>
<td>G</td>
<td>25</td>
<td></td>
<td>25</td>
<td></td>
</tr>
<tr>
<td>H</td>
<td>51</td>
<td></td>
<td>56</td>
<td></td>
</tr>
<tr>
<td>J</td>
<td>7</td>
<td></td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>K①</td>
<td>9</td>
<td>16.5</td>
<td>9.5</td>
<td>17.5</td>
</tr>
<tr>
<td>L</td>
<td>13</td>
<td></td>
<td>13</td>
<td></td>
</tr>
<tr>
<td>N</td>
<td>11</td>
<td></td>
<td>11</td>
<td></td>
</tr>
<tr>
<td>P</td>
<td>51</td>
<td></td>
<td>56</td>
<td></td>
</tr>
<tr>
<td>Q</td>
<td>8</td>
<td></td>
<td>11</td>
<td></td>
</tr>
</tbody>
</table>

R (Nominal × Pitch × Depth): M8 × 1.25 × 16, M8 × 1.25 × 16
Mounting Bolt S: M8 × 1.25 × 70, M8 × 1.25 × 75
Mounting Bolt T: M6 × 1 × 90, M6 × 1 × 95

Notes:
1. Indicator extends proportionally to pressure. Be aware not to interfere with other devices of max. extension dimension when designing.
2. Roughness of mounting surface (O-ring seal surface) of G (Gasket option) should be 6.35 or better.
3. Do not disassemble. Components include pressurized spring parts. It is dangerous to disassemble.
Pressure Indicator

Model JKA
Model JKB

Detects circuit pressure of a fixture disconnected from the hydraulic pressure source

What is pressure indicator?

The circuit pressure of the fixture disconnected from hydraulic power source is able to be detected by using pressure indicator and sensor switch together. It is useful for automatic controlling and detecting abnormal circumstances.

Circuit Symbol

Since a filter is not built in each port, please sufficiently perform flushing of pipings and fittings to prevent foreign substances such as cutting chips from entering the circuit.

<table>
<thead>
<tr>
<th>Classification</th>
<th>Horizontal Mounting</th>
<th>Vertical Mounting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Set Pressure Range</td>
<td>4.5～9.5MPa / 9.5～15MPa / 15～22 MPa</td>
<td></td>
</tr>
<tr>
<td>Mounting Direction</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Action Description

Images
* This is a simplified drawing.
 The actual part components may be different.

Circuit Example

Operation Sequence

<table>
<thead>
<tr>
<th>Action</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>When locking</td>
<td>Hydraulic pressure is ON.</td>
</tr>
<tr>
<td>Supply hydraulic pressure to actuator and pressure indicator.</td>
<td></td>
</tr>
<tr>
<td>When releasing</td>
<td>Hydraulic pressure is OFF.</td>
</tr>
<tr>
<td>The pressure is released from the actuator and pressure indicator. Then the indicator rod retracts back to the edge of pressure indicator.</td>
<td></td>
</tr>
<tr>
<td>When the pressure reaches the set pressure of pressure indicator, indicator rod is at full stroke (3±0.5±mm stick out) and if using the sensor or switch, it can be detected.</td>
<td>The indicator rod extends gradually because of the balance between built-in spring and pressure just before reaching set pressure.</td>
</tr>
</tbody>
</table>
Model No. Indication

JK A 0 3 0 - 0 S (5.5MPa)

1 Mounting Direction
A : Horizontal Mounting
B : Vertical Mounting

2 Set Pressure Code
3 : 4.5 ～ 9.5MPa
5 : 9.5 ～ 15.0MPa
7 : 15.0 ～ 22.0MPa

3 Design No.
0 : Revision Number

4 Piping Method
G : Gasket Option
S : Piping Option (Rc1/4 Thread)

5 Set Pressure (Set pressure when indicator rod is at full-stroke.)

Please indicate the set pressure when ordering.
(please inform us with proper unit symbols.)

※ Indicator rod is at full stroke (±0.5mm) when set pressure is reached.

Entry Example
at 5MPa → (5.0MPa)
at 20.5MPa → (20.5MPa)
at 700PSI → (700PSI)

Specifications

<table>
<thead>
<tr>
<th>Model No.</th>
<th>JK 030</th>
<th>JK 050</th>
<th>JK 070</th>
</tr>
</thead>
<tbody>
<tr>
<td>Set Pressure Range MPa</td>
<td>4.5 ～ 9.5</td>
<td>9.5 ～ 15.0</td>
<td>15.0 ～ 22.0</td>
</tr>
<tr>
<td>Withstanding Pressure MPa</td>
<td>37.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pressure Change MPa/mm</td>
<td>0.65</td>
<td>1.38</td>
<td>2.55</td>
</tr>
<tr>
<td>Operating Temperature °C</td>
<td>0 ～ 70</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Usable Fluid</td>
<td>General Hydraulic Oil Equivalent to ISO-VG-32</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mass kg</td>
<td>0.5</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note : ※1. It shows the pressure change by 1mm stroke of the indicator.
External Dimensions

JKA0_0-0-□

- **Hydraulic Port (S: Piping Option only)**
 - Rc1/4 Thread
- **At Hydraulic Pressure Zero**
- **Indicator**
 - At Set Pressure (At Full Stroke)
- **4-φ6.8 Bolt Hole**
 - 4-M6 x 1 x 40 Bolt (Included)
- **Hydraulic Port (G: Gasket Option only)**
 - O-ring: TBP8 (Included)
- **2-φ6 Spring Pin**
 - Stroke

JKB0_0-0-□

- **2-φ6.8 Bolt Hole**
- 2-M6 x 1 x 35 Bolt (Included)
- **Indicator**
 - At Set Pressure (At Full Stroke)
- **At Hydraulic Pressure Zero**
- **Hydraulic Port (S: Piping Option only)**
 - Rc1/4 Thread
- **Hydraulic Port (G: Gasket Option only)**
 - O-ring: TBP8 (Included)

Note:

- **2.** Roughness of mounting surface (O-ring seal surface) should be 6.35 or less.
Non-Leak Reducing Valve

Model BMA
Model BMG

In-line type reducing valve that does not require a drain port.
Drain port for reducing pressure is not needed. This allows to reduce the number of circuits.

What is reducing valve?

Non-leak reducing valves reduce hydraulic circuit pressure of a fixture. Partial in-line circuit pressures can be reduced. This allows for simple circuit designs and proper quick change fixtures as well as eliminating a need for an exterior drain port.

<table>
<thead>
<tr>
<th>Classification</th>
<th>Non-Leak Reducing Valve</th>
<th>Compact Non-Leak Reducing Valve</th>
</tr>
</thead>
<tbody>
<tr>
<td>Incoming Supply Pressure</td>
<td>2~7MPa</td>
<td>6~30MPa</td>
</tr>
<tr>
<td>Outgoing Set Pressure</td>
<td>1~6MPa</td>
<td>3~14MPa</td>
</tr>
</tbody>
</table>

Piping Method

- Piping Option
- Gasket Option
- BK Connecting Option

Gasket Option
Action Description

Images

- Actuator ①
- Reducing Valve
- Work piece

- Actuator ②
- Reducing Valve
- Work piece

Circuit Example

- Pressure at the Source
- Reduced Pressure

Operation Sequence

<table>
<thead>
<tr>
<th>When Locking</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hydraulic pressure is ON.</td>
<td>The valve of reducing valve closes and then supply the outgoing side set pressure to actuator ①. There is differential pressure between outgoing side pressure and incoming side pressure (please refer to specification).</td>
</tr>
<tr>
<td>Supply hydraulic pressure to actuator ① and ②.</td>
<td>The pressure going into actuator ② raise up to the original pressure and lock completes.</td>
</tr>
<tr>
<td>Raise the pressure up to the outgoing side set pressure.</td>
<td>Machining process</td>
</tr>
<tr>
<td>The valve of reducing valve closes and then supply the outgoing side set pressure to actuator ①. There is differential pressure between outgoing side pressure and incoming side pressure (please refer to specification).</td>
<td></td>
</tr>
</tbody>
</table>

When Releasing

<table>
<thead>
<tr>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hydraulic pressure is OFF.</td>
</tr>
<tr>
<td>The actuators ①/② are released at the same time. When incoming side pressure reduces, check valve of reducing valve opens.</td>
</tr>
<tr>
<td>Release action completed.</td>
</tr>
</tbody>
</table>

Adjustable Set Pressure

<table>
<thead>
<tr>
<th>Set Hydraulic Pressure Change per Rotation (MPa/Rev)</th>
<th>BMA2030-0</th>
<th>BMA2050-0</th>
<th>BMA2070-0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model No.</td>
<td>BMG2030-0G</td>
<td>BMG2050-0G</td>
<td>BMG2070-0G</td>
</tr>
<tr>
<td>Set Pressure Change per Rotation (Reference)</td>
<td>0.3</td>
<td>1.2</td>
<td>3.8</td>
</tr>
</tbody>
</table>

Notes:
1. The set pressure value is set according to the model code.
2. The value varies depending on the incoming port pressure.
3. Pressure increases by turning clockwise and decreases by turning counter-clockwise.
Non-Leak Reducing Valve

Model No. Indication

BMA20 5 0 - 0 G (5-25MPa)

1. **Outgoing Side Set Pressure**
 - 3: 1.0 ~ 6.0MPa
 - 5: 3.0 ~ 14.0MPa
 - 7: 6.0 ~ 27.0MPa

2. **Design No.**
 - 0: Revision Number

3. **Piping Method**
 - Blank: Piping Option (Rc1/4 Thread)
 - G: Gasket Option
 - K: BK Valve Connecting Option (Rc1/4 Thread in Outgoing Port)

Note: 1. Please contact us separately for the detailed dimensions of K (BK Valve Connecting Option).

Specifications

<table>
<thead>
<tr>
<th>Model No.</th>
<th>BMA2030-0</th>
<th>BMA2050-0</th>
<th>BMA2070-0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Incoming Supply Pressure MPa</td>
<td>2.0 ~ 7.0</td>
<td>6.0 ~ 30.0</td>
<td>9.0 ~ 30.0</td>
</tr>
<tr>
<td>Outgoing Set Pressure MPa</td>
<td>1.0 ~ 6.0</td>
<td>3.0 ~ 14.0</td>
<td>6.0 ~ 27.0</td>
</tr>
<tr>
<td>Allowable Minimum Pressure Difference MPa</td>
<td>1.0</td>
<td>3.0</td>
<td>3.0</td>
</tr>
<tr>
<td>Withstanding Pressure MPa</td>
<td>10.5</td>
<td>37.5</td>
<td>37.5</td>
</tr>
<tr>
<td>Min. Passage Area mm²</td>
<td>23.3</td>
<td>23.3</td>
<td>23.3</td>
</tr>
<tr>
<td>Operating Temperature °C</td>
<td>0 ~ 70</td>
<td>0 ~ 70</td>
<td>0 ~ 70</td>
</tr>
<tr>
<td>Usable Fluid</td>
<td>General Hydraulic Oil Equivalent to ISO-VG-32</td>
<td>General Hydraulic Oil Equivalent to ISO-VG-32</td>
<td>General Hydraulic Oil Equivalent to ISO-VG-32</td>
</tr>
<tr>
<td>Mass kg</td>
<td>1.5</td>
<td>1.5</td>
<td>1.5</td>
</tr>
</tbody>
</table>

Note: 2. Allowable minimum pressure difference shows the minimum difference between incoming and outgoing pressure.
External Dimensions

BMA20_0-0

※ This drawing shows piping method (Blank) : Piping Option.

2-φ9 Bolt Hole
2-M8×1.25×55 Bolt (Included)

CYL Port (Outgoing Pressure Side)
Rc1/4 Thread

Outgoing Pressure Adjusting Screw
(M8×1.25)

Hex. Hole 4

※ This drawing shows piping method (G) : Gasket Option.

2-φ9 Bolt Hole
2-M8×1.25×55 Bolt (Included)

CYL Port (Outgoing Pressure Side)
O-ring:18P8 (Included)

P(I)R Port (Incoming Pressure Side)
O-ring:18P8 (Included)

Notes:

※3. Roughness of mounting surface (O-ring seal surface) should be 6.3S or less.

※4. It can be used as P(R) port by removing the plug.
Model No. Indication

BMG20 500 G (5-25MPa)

1 Outgoing Side Set Pressure

- 3: 1.0 ~ 6.0MPa
- 5: 3.0 ~ 14.0MPa
- 7: 6.0 ~ 27.0MPa

2 Design No.

0: Revision Number

3 Piping Method

G: Gasket Option

Note: ※1. Only G (Gasket Option) is available for BMG.
Select BMA if connecting with couplers etc.

4 Set Pressure (Outgoing Set Pressure - Incoming Supply Pressure)

Please indicate the set pressure when ordering.
(Please inform us with proper unit symbols.)
※ Allowable minimum pressure difference shows the minimum
difference between incoming and outgoing pressure.

Entry Example
Outgoing: 5MPa Incoming: 25MPa Setting → (5.0-25.0MPa)
Outgoing: 725PSI Incoming: 3625PSI Setting → (725-3625PSI)

Specifications

<table>
<thead>
<tr>
<th>Model No.</th>
<th>BMG2030-0G</th>
<th>BMG2050-0G</th>
<th>BMG2070-0G</th>
</tr>
</thead>
<tbody>
<tr>
<td>Incoming Supply Pressure MPa</td>
<td>2.0 ~ 7.0</td>
<td>6.0 ~ 30.0</td>
<td>9.0 ~ 30.0</td>
</tr>
<tr>
<td>Outgoing Set Pressure MPa</td>
<td>1.0 ~ 6.0</td>
<td>3.0 ~ 14.0</td>
<td>6.0 ~ 27.0</td>
</tr>
<tr>
<td>Allowable Minimum Pressure Difference MPa</td>
<td>1.0</td>
<td>3.0</td>
<td>3.0</td>
</tr>
<tr>
<td>Withstanding Pressure MPa</td>
<td>10.5</td>
<td>37.5</td>
<td>37.5</td>
</tr>
<tr>
<td>Min. Passage Area mm²</td>
<td></td>
<td>23.3</td>
<td></td>
</tr>
<tr>
<td>Operating Temperature °C</td>
<td></td>
<td>0 ~ 70</td>
<td></td>
</tr>
<tr>
<td>Usable Fluid</td>
<td></td>
<td>General Hydraulic Oil Equivalent to ISO-VG-32</td>
<td></td>
</tr>
<tr>
<td>Mass kg</td>
<td></td>
<td>0.8</td>
<td></td>
</tr>
</tbody>
</table>

Note: ※2. Allowable minimum pressure difference shows the minimum difference between incoming and outgoing pressure.
External Dimensions

Outgoing Pressure Adjusting Screw (M8 x 1.25)

- Max: 30
- 6.5
- 54
- 37
- 33
- 52
- 24
- 3.5

2-M6 x 1 x 35 Bolt (Included)

Hex. Hole 4

CYL. Port [Outgoing Pressure Side]

- O-ring: 1BP11 (Included)

P(R) Port [Incoming Pressure Side]

- O-ring: 1BP11 (Included)

Note:

※3. Roughness of mounting surface (O-ring seal surface) should be 6.35 or less.
Continuous Discharge Booster

Model AU
Model AU-M

Continuous discharge booster that has no limitation for the outgoing side circuit capacity

Actuator is made in a compact size by boosting pressure. High pressure hydraulic power source is not needed by partial boosting pressure.

What is continuous discharge booster?

Boost incoming supply pressure by the back and forth action of piston and using bypass to get the boosted pressure to the outgoing side.

There is no limitation in the outgoing side circuit capacity because it continuously discharges the pressure so it is the best for multiple actuator or big circuit volume.

There are modular option and it can be attached to modular valve.

<table>
<thead>
<tr>
<th>Classification</th>
<th>Piping Option</th>
<th>Modular Option</th>
</tr>
</thead>
<tbody>
<tr>
<td>Incoming Discharge Pressure</td>
<td>3 ~ 12.5MPa</td>
<td>2 ~ 8.4MPa</td>
</tr>
<tr>
<td>Outgoing Discharge Pressure</td>
<td>6 ~ 25MPa</td>
<td>6 ~ 25MPa</td>
</tr>
<tr>
<td>Boosting Ratio</td>
<td>2 times</td>
<td>3 times</td>
</tr>
</tbody>
</table>

Circuit Symbol

Incoming P1(R) Port
Pilot Port (D) Commonly Used as Drain Port

※ Each port has a built-in filter.

※ This drawing shows AU-MA.

※ This drawing shows AU-MB.

→ P.1141
Action Description

Circuit Example: Single Action Circuit

Continuous Discharge Booster

![Circuit Diagram](image)

Actuator

- **P1(R)**
- **P2**
- **D (Pilot Port)**

Pressure at the Source

Boosted Pressure

Operation Sequence

<table>
<thead>
<tr>
<th>When Locking</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supply hydraulic pressure to continuous discharge booster.</td>
<td></td>
</tr>
<tr>
<td>Supply oil from outgoing port of continuous discharge booster to actuator.</td>
<td></td>
</tr>
<tr>
<td>Outgoing side oil is full and the pressure start to rise.</td>
<td></td>
</tr>
<tr>
<td>Boosting procedure starts inside the continuous discharge booster.</td>
<td></td>
</tr>
<tr>
<td>Internal piston moves back and forth until the outgoing side pressure is boosted enough and then the pressure rises.</td>
<td>Get the drain connected to tank during boosting.</td>
</tr>
<tr>
<td>Outgoing side circuit capacity has no limitation.</td>
<td></td>
</tr>
<tr>
<td>Locking action completed.</td>
<td></td>
</tr>
</tbody>
</table>

When Releasing

- Machining process

Supply hydraulic pressure to pilot port of continuous discharge booster.

The pilot valve(※1) opens and lock-side hydraulic pressure goes back to the tank.

Actuator operates the release action.

Releasing action completed.

※ This drawing is the explanation of piping option (AU). Please refer to the detail page for modular option (AU-M).

Circuit Example: Double Action Circuit

Continuous Discharge Booster

![Circuit Diagram](image)

Actuator

- **P1(R)**
- **P2**
- **D (Pilot Port)**

Pressure at the Source

Boosted Pressure

Operation Sequence

<table>
<thead>
<tr>
<th>When Locking</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supply hydraulic pressure to continuous discharge booster.</td>
<td></td>
</tr>
<tr>
<td>The pilot valve(※1) is operated by approximately 10% of outgoing side pressure.</td>
<td></td>
</tr>
<tr>
<td>Outgoing side oil is full and the pressure start to rise.</td>
<td></td>
</tr>
<tr>
<td>Boosting procedure starts inside the continuous discharge booster.</td>
<td></td>
</tr>
<tr>
<td>Internal piston moves back and forth until the outgoing side pressure is boosted enough and then the pressure rises.</td>
<td></td>
</tr>
<tr>
<td>Outgoing side circuit capacity has no limitation.</td>
<td></td>
</tr>
<tr>
<td>Locking action completed.</td>
<td></td>
</tr>
</tbody>
</table>

When Releasing

- Machining process

Supply hydraulic pressure to pilot port of continuous discharge booster.

The pilot valve(※1) opens and lock-side hydraulic pressure goes back to the tank.

Actuator operates the release action.

Releasing action completed.

※ This drawing is the explanation of piping option (AU). Please refer to the detail page for modular option (AU-M).
Continuous Discharge Booster

Model No. Indication

AU 2 5 2 1 - 0

1. **Outgoing Side Discharge Pressure Code**

 - 5 : 6～25MPa
 - 8 : 10～35MPa

 ※1. It is "8" only for AU2850-0. Modular model : only "5" can be selected.

2. **Boosting Ratio**

 - 2 : 2 times
 - 3 : 3 times
 - 5 : 5 times

3. **Design No. (Revision Number)**

 - 0 : MA, MB selected
 - 1 : Blank selected

4. **Piping Method**

 - Blank : Piping Option (Rc1/4 Thread)
 - MA : Modular Option (A port is boosted up.)
 - MB : Modular Option (B port is boosted up.)

 ![Diagram of piping methods]

 Note:

 1. Please see Circuit Symbol for the circuit drawing.

Specifications

<table>
<thead>
<tr>
<th>Model No.</th>
<th>AU2521-0</th>
<th>AU2520-0MA</th>
<th>AU2531-0</th>
<th>AU2530-0MA</th>
<th>AU2851-0</th>
<th>AU2550-0MA</th>
<th>AU2550-0MB</th>
</tr>
</thead>
<tbody>
<tr>
<td>Boosting Ratio</td>
<td>2 times</td>
<td>3 times</td>
<td>5 times</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Incoming Supply Pressure</td>
<td>MPa</td>
<td>3.0 ～ 12.5</td>
<td>2.0 ～ 8.4</td>
<td>2.0 ～ 7.0</td>
<td>2.0 ～ 5.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Outgoing Boosting Pressure</td>
<td>MPa</td>
<td>6.0 ～ 25.0</td>
<td>6.0 ～ 25.0</td>
<td>10.0 ～ 35.0</td>
<td>10.0 ～ 25.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Min. Passage Area</td>
<td>mm²</td>
<td>14.5</td>
<td>12.5</td>
<td>14.5</td>
<td>12.5</td>
<td>14.5</td>
<td>12.5</td>
</tr>
<tr>
<td>Incoming Side Supply Rate</td>
<td>L/min</td>
<td>2 ～ 10</td>
<td>2 ～ 10</td>
<td>2 ～ 10</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pilot Valve Opening Pressure</td>
<td>Approx. 1/6 or more of the outgoing pressure</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Operating Temperature</td>
<td>°C</td>
<td>0 ～ 70</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Usable Fluid</td>
<td>General Hydraulic Oil Equivalent to ISO-VG-32</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mass</td>
<td>kg</td>
<td>1.1</td>
<td>2.3</td>
<td>1.1</td>
<td>2.3</td>
<td>1.1</td>
<td>2.3</td>
</tr>
</tbody>
</table>
Action Description ※ This is referencing to the model drawing of AU2□□□-0.

Pressure Boosting (Discharge)

1. Having hydraulic pressure supplied from the incoming side port oil passes through the built-in check valve C (A and B) to flow to the outgoing side port.
2. As the outgoing pressure comes close to the incoming pressure, the check valve C (A and B) is shut to operate the built-in switching unit.
 The boosting piston boosts the incoming pressure remaining between the check valves A and B.
 The switching unit is operated and the boosting piston boosts the incoming pressure remaining between the check valves A and B.
3. The boosted pressure forces the check valve B to open so that oil having the boosted pressure flows to the outgoing side.
4. When the boosting piston reaches the stroke end, the check valve B is shut to operate the switching unit. So that oil having the incoming pressure flows through the check valve A to push the pressure boosting piston back.
5. When the pressure boosting piston reaches the back end, the check valve A is shut to operate the switching unit again to return to the step 2.
 These steps are repeated to allow the AU to discharge continuously.

Reducing Pressure (Release)

1. The incoming pressure is supplied through the pilot port.
2. The pilot valve opens the check valve C to release the outgoing pressure.
 ※Please refer to the pilot valve opening pressure on specification of the pressure that makes pilot valve activated.

AU Continuous Discharge Booster Flow Characteristic Diagram

![Outgoing Discharge Flow Characteristic Diagram](image1)

![Outgoing Discharge Flow Characteristic Diagram](image2)

![Outgoing Discharge Flow Characteristic Diagram](image3)
Continuous Discharge Booster

External Dimensions (Piping Option)

| AU2521-0 / AU2531-0 / AU2851-0 |

![Diagram showing external dimensions with labels for Pilot Port (D) commonly used as Drain Port, RC1/4, 2-M6 x 1 x 55 Bolt (with Square Spring Washer) included, and Outgoing P2 Port, RC1/4.]
External Dimensions (Modular Option)

AU2520-OMA / AU2530-OMA / AU2550-OMA

Note:
1. Mounting surface dimension is ISO4401-03.

AU2520-OMB / AU2530-OMB / AU2550-OMB

Note:
1. Mounting surface dimension is ISO4401-03.
Cautions (AU)

< Cautions (Common) >
1. Discharge flow decreases as pressure on outgoing side increases. (Refer to Flow Characteristic Graph.) Please keep in mind that if there is larger load when an actuator on outgoing side strokes, the stroke time will be longer due to the decrease of discharge flow.
2. It cannot be pressurized properly if using a device with leakage in outgoing side circuit. (Since a general modular solenoid valve has internal leakage, do not connect it to P2 port.)
3. Due to the mechanical structure, there is always internal leakage between the incoming port (P1) and the pilot port (D) (for modular model, between the pressurizing incoming port and T port). Please pay attention to the following notes.
 - When using a balance-stop pump (AA/AB/AC Pump manufactured by KOSMEK) as hydraulic power supply, the pump does not stop in balance due to the internal leakage of AU, leading to continuous operation and reduction in pump life.
 - When supply pressure decreases or stops temporarily, pressure in the circuit after the outgoing port (P2) (for modular model: pressurizing outgoing port) of AU will be maintained by non-leak function. However, pressure in the circuit before P1 port will not be maintained due to the internal leakage between P1 port and D port.
4. Stop hydraulic supply before disconnecting from hydraulic power source with auto couplers, etc. (Refer to Reference Circuit.)
5. Depending on incoming supply flow rate, circuit volume on outgoing side etc., surging may occur on incoming supply side. This may result by increasing too much set pressure on outgoing side.
6. In that case, please prevent surging by installing accumulator or reducing incoming supply, etc.

6. If installing multiple numbers of AU to a low pressure hydraulic unit with high pressure supplied to a circuit, pressure fluctuation will be much larger, causing unstable pressure supply.

< Cautions for Piping Option >
1. Although each port is equipped with a filter, in order to maintain high pressure in the outgoing port (P2) at idle state of pressure supply to the incoming port (P1), the piping and fitting should be thoroughly cleaned before use.
2. Tightening with excessive torque leads to malfunction. (Maximum) tightening torque should be as shown below.

<table>
<thead>
<tr>
<th>Model No.</th>
<th>Bolt Size</th>
<th>Tightening Torque (N-m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>AU2□□1-0</td>
<td>M6×1</td>
<td>MAX. 10</td>
</tr>
</tbody>
</table>

< Cautions for Modular Option >
1. Although the boosting ports (A1/A2 port for AU2□□0-0MA, B1/B2 port for AU2□□0-0MB) are equipped with a filter, the piping and fitting should be thoroughly cleaned before use.
2. When using Three-position solenoid valve, select ABT connection as the neutral position port model. Pressure in outgoing side will be released when using a model (closed center, etc.) that supplied pressure in P port flows into A or B port due to internal leakage when shifting to neutral position at outgoing pressure maintained state.
3. Make sure that hydraulic pressure is supplied to the boosting port (A1 or B1) after the actuator on the outgoing side is completely released. If pressure is supplied during release when there is still pressure (back pressure) remained in the boosting port, boosting time will be longer.
Circuit Reference

< In the case of separating hydraulic power source from fixture with auto coupler etc. >

- **Points**
 1. AU makes it easier to boost pressure on outgoing side. (Release action is controlled with low pressure.)
 2. Use the three-position solenoid valve for control (with neutral position ABT (ABR) connection), and stop hydraulic pressure supply with neutral position before operating connection/disconnection device. Even in this case, the pressure in the circuit after the outgoing port (P2) will be maintained by internal check valve of AU.
 3. ★1 BEP Non-Leak Pilot Check Valve is a bypass circuit of AU. When the action speed of a cylinder is insufficient due to AU passage area, it can be accelerated by providing the bypass circuit which increases the amount of oil pass on both lock and release sides.
 4. ★2 BEP Non-Leak Pilot Check Valve is an example when maintaining hydraulic pressure at released state.
 5. Non-leak circuit will not work when connecting an actuator, which is not to be boosted, to P1(R) port since there is internal leakage between P1(R) port and D port. Please design another circuit. (Refer to Common Cautions No.3.)

< In the Case of Modular Option in Use >

Refer to the Caution of Modular Option No.2
One Shot Booster

Model BU

BU booster valve is placed in line circuit, compact, the best for boosting pressure partially in fixture

It matches our product AB/AC pump (balance stop pump) and is the best for quick change fixture.

What is one shot booster?

One-shot booster is placed in line circuit type and it is able to boost the hydraulic pressure of the circuit partially with non-leak function.

It has larger capacity of outgoing side circuit than general booster due to built-in sequence valve and check valve. The check valve with non-leak function holds the outgoing side pressure with zero leakage.

It is possible to design simple circuit and it is appropriate for quick change fixture.

Boosting the pressure just by connecting incoming side and outgoing side.
Action Description

Operation Sequence

<table>
<thead>
<tr>
<th>When locking</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hydraulic pressure is ON.</td>
<td>Both actuator ① and ② are activated.</td>
</tr>
<tr>
<td>When the pressure reaches up to the built-in sequence set pressure, built-in non-leak check valve is closed.</td>
<td>Boosting pressure process starts inside the booster and the internal piston is pushed, then the outgoing side pressure is boosted.</td>
</tr>
<tr>
<td>The pressure of actuator ② is boosted.</td>
<td>The outgoing side circuit capacity is limited because it is one shot model.</td>
</tr>
<tr>
<td>Locking action completed.</td>
<td>Machining process</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>When releasing</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hydraulic pressure is OFF.</td>
<td>The actuators ①,② are released at the same time.</td>
</tr>
<tr>
<td>The actuators ①,② are released at the same time.</td>
<td>Releasing action completed.</td>
</tr>
</tbody>
</table>
Model No. Indication

BU50 20 - 0 (10.5MPa)

1 Boosting Ratio
- 2: 2.2 times
- 3: 3.0 times
- 6: 6.0 times

2 Design No.
- 0: Revision Number

3 Incoming Supply Pressure
Please inform us of the incoming supply pressure.
(Do not forget to mention the proper unit symbols.)

Entry Example
Incoming Supply Pressure: 5MPa → (5.0MPa)
Incoming Supply Pressure: 700PSI → (700PSI)

Specifications

<table>
<thead>
<tr>
<th>Model No.</th>
<th>BU5020-0</th>
<th>BU5030-0</th>
<th>BU5060-0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Boosting Ratio</td>
<td>2.2 times</td>
<td>3 times</td>
<td>6 times</td>
</tr>
<tr>
<td>Incoming Supply Pressure</td>
<td>5.0 ~ 11.4</td>
<td>3.0 ~ 8.4</td>
<td>1.5 ~ 4.2</td>
</tr>
<tr>
<td>Sequence Set Pressure</td>
<td>4.0 ~ 9.1</td>
<td>2.3 ~ 6.7</td>
<td>1.1 ~ 3.2</td>
</tr>
<tr>
<td>Outgoing Discharge Pressure</td>
<td>11.0 ~ 25.0</td>
<td>9.0 ~ 25.2</td>
<td>9.0 ~ 25.2</td>
</tr>
<tr>
<td>Withstanding Pressure</td>
<td>37.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Discharge Volume during Boosting Process</td>
<td>30</td>
<td>23</td>
<td>12</td>
</tr>
<tr>
<td>Min. Passage Area</td>
<td>14.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Operating Temperature</td>
<td>0 ~ 70 °C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Usable Fluid</td>
<td>General Hydraulics Oil Equivalent to ISO-32</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mass</td>
<td>4.4 kg</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes:
1. Boosting ratio is slightly different depending on packing seal resistance and spring force.
2. Sequence set pressure should be 70 ~ 80% of incoming supply pressure.
3. Discharge volume during boosting process is the total oil discharge volume during boosting after exceeds sequence set pressure.

Performance Graph

Allowable Circuit Capacity Curve
Since BU is one shot booster, it has a limitation in the volume of outgoing circuit.

Note:
1. Performance graph curve is referencing.
2. Referencing condition: All piping material shall be steel. Air in the circuit shall be completely flushed, and workpiece and attachment (lever) shall be securely fastened.
Action Description

When supplied

<Charging Process>

1. Check valve [A] is always kept in “Open” position by the rod.
 Incoming pressure flows to outgoing side through check valve [A], then outgoing side actuators are activated completely.

2. When the pressure reaches the sequence set pressure, sequence valve [B] opens.
 The incoming pressure having passed through sequence valve [B] extends piston [C] ahead.

<Boosting Process>

3. When piston [C] extends ahead a little, check valve [A] comes off from the rod, then it closes.
 Up to this time incoming and outgoing pressure are same pressure.

4. When check valve [A] closes, outgoing circuit becomes closed circuit, and pressure is boosted according to area ratio of piston [C].

At discharged (Discharging Process)

Outgoing Side

1. When incoming pressure is released, check valve [D] opens.
 Sequence valve [B] closes almost simultaneously.
 Piston [C] is pushed back by outgoing pressure and return spring [E], and outgoing pressure drops.

2. Check valve [A] is opened and pushed by the rod at the time just before piston [C] finishing moving back.
 Release of the discharge oil from outgoing side actuator is released through the check valve [A].

3. When the outgoing pressure is completely released and the piston [C] fully retracts back, check valve [D] closes.

4. Discharge is finished.
C External Dimensions

![Diagram of external dimensions](image)

C Cautions

1. Excessive amount of supply oil in the incoming side leads to malfunction of BU Booster. Provide a flow control valve with check valve just before the incoming side port, or adjust the flow rate on hydraulic pressure source side.
2. A large amount of air mixed in the outgoing circuit leads to boosting failure. If it does not work properly, release air from the circuit.
3. A large volume of oil capacity in outgoing circuit leads to boosting failure. Refer to the outgoing circuit capacity shown in Allowable Circuit Capacity Curve.
4. Using hydraulic hoses in outgoing circuit may result in insufficient boosting because the volume changes during boosting. Please use steel pipes as much as possible referring to the discharge rate of boosting process shown in specification.
5. Installing an accumulator in outgoing circuit may result in boosting failure by the similar reason. In case of using an accumulator, please select a proper one referring to the outgoing circuit capacity shown in Allowable Circuit Capacity Curve.
6. It is recommended to install a pressure gauge. It is easy to check the boosting condition by installing a pressure gauge on the outgoing circuit.
7. Do not install a flow control valve to an actuator on outgoing side. It may be boosted before the actuator completes operation leading to boosting failure.
<table>
<thead>
<tr>
<th>Features</th>
<th>Action Description</th>
<th>Model No. Indication Specifications</th>
<th>Performance Curve Allowable Boosting Capacity Curve</th>
<th>Internal Action Description</th>
<th>External Dimensions</th>
<th>Cautions</th>
</tr>
</thead>
<tbody>
<tr>
<td>High-Power Series</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pneumatic Series</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hydraulic Series</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Valve / Coupler</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hydraulic Unit</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Manual Operation Accessories</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cautions / Others</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Air Sequence Valve
- BWD

Hydraulic Non-Leak Coupler
- BGA/RGB
- BGC/RGBD
- BGP/RGBS
- BPP/BGS
- BNP/BN5
- BNP/BJS
- BNP/BF5

Auto Coupler
- JVA/JVB
- JVC/JVD
- JVE/JVF
- JMA/JNB
- JMC/JND
- JLP/JS5

Rotary Joint
- JR

Hydraulic Valve
- BK
- BEO
- BT
- BLS/BLG
- BLB
- J55/J5
- JKA/JKB
- BMA/BMG
- AU/AU-M
- BU
- BP/JPB
- BK
- BEP/BS5
- BH
- BC

Air Hydraulic Unit
- CV
- CK
- CP/CPB
- CPC/CQ5
- CB
- CC
- AB/AB-V
- AC/AC-V

1152
Pilot Reducing Valve Reservoir

Model BP
Model JPB

Reducing internal circuit hydraulic pressure while it is disconnected from pressure power source
Reduce pressure easily by pilot operation.

- What is a pilot reducing valve?
 It is possible to reduce internal circuit pressure of disconnected fixture from hydraulic power source by pilot operation.

Kosmek reservoir can hold the oil discharged from pilot reducing valve temporarily. The reservoir also has a non-leak check valve in it.

Circuit Symbol: Pilot Reducing Valve (BP)

Circuit Symbol: Reservoir (JPB)

※ A filter is built in P port. Since a filter is not built in the R port, please sufficiently perform flushing of piping and fitting to prevent foreign substances such as cutting chips from entering the circuit.

※ A filter is built in R2 port. Since a filter is not built in the R1 port, please sufficiently perform flushing of piping and fitting to prevent foreign substances such as cutting chips from entering the circuit.
Operation Sequence

<table>
<thead>
<tr>
<th>Action Description</th>
<th>Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>Disconnection is completed when it is locked.</td>
<td></td>
</tr>
<tr>
<td>Rough machining (Large thrust machining).</td>
<td></td>
</tr>
<tr>
<td>When the push button of pilot reducing valve is pushed by main spindle or manually, the circuit is connected to the reservoir and reduces the pressure to the relief set pressure. Release the push button. Start the final machining operation.</td>
<td>Lowering clamping force prior to finish machining operation, it allows to prevent or minimize distortion of workpiece.</td>
</tr>
<tr>
<td>When the hydraulic power source is OFF, connect the fixture and then release the non-leak valve. When the circuit pressure becomes lower than the pressure held in reservoir tank, check valve opens and hydraulic oil returns to tank.</td>
<td></td>
</tr>
</tbody>
</table>
Model No. Indication

BP 203 0 - 0 G (2.5MPa)

1 Pressure Code

- 203: Operating Pressure 2.0~7.0MPa
 - Relief Pressure 1.5~5.0MPa
- 507: Operating Pressure 7.0~30.0MPa
 - Relief Pressure 5.0~15.0MPa

2 Design No.

- 0: Revision Number

3 Piping Method

- Blank: Piping Option (Rc1/4 Thread)
- G: Gasket Option
 - Select G: Gasket option for connecting JPB.

4 Set Pressure (Relief Set Pressure)

Please let us know the relief set pressure.
(Please inform us with proper unit symbols.)

Entry Example

- Relief Pressure: 4MPa → (4.0MPa)
- Relief Pressure: 1200PSI → (1200PSI)

Specifications

<table>
<thead>
<tr>
<th>Model No.</th>
<th>BP2030-0</th>
<th>BP5070-0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operating Pressure</td>
<td>2.0 ~ 7.0</td>
<td>7.0 ~ 30.0</td>
</tr>
<tr>
<td>Relief Pressure</td>
<td>1.5 ~ 5.0</td>
<td>5.0 ~ 15.0</td>
</tr>
<tr>
<td>Withstanding Pressure</td>
<td>10.5</td>
<td>37.5</td>
</tr>
<tr>
<td>Pilot Operating Force</td>
<td>0.06 ~ 0.22</td>
<td>0.22 ~ 1.00</td>
</tr>
<tr>
<td>Min. Passage Area</td>
<td>9.1</td>
<td></td>
</tr>
<tr>
<td>Operating Temperature</td>
<td>0 ~ 70 °C</td>
<td></td>
</tr>
<tr>
<td>Usable Fluid</td>
<td>General Hydraulic Oil Equivalent to ISO-VG-32</td>
<td></td>
</tr>
<tr>
<td>Mass</td>
<td>1.4 kg</td>
<td></td>
</tr>
</tbody>
</table>

Notes:

1. Operating pressure shows initial operating pressure.
2. Relief pressure shows the relief set pressure after operating pilot.
3. Set the pilot operating force at more than minimum operating force (=More than operating pressure × 0.032) and less than 1.5kN.

External Dimensions

BP 203 0-0: Piping Option

- Operating Stroke
 - Push Button
 - R Port: Rc1/4 Thread
 - P Port: Rc1/4 Thread
 - Relief Pressure Adjusting Screw
 - Lock Nut M6 × 1

BP 203 0-0 G: Gasket Option

- Operating Stroke
 - Push Button
 - P Port: Rc1/4 Thread
 - Relief Pressure Adjusting Screw
 - Lock Nut M6 × 1
 - 2-φ9 Bolt Hole
 - 2-M8 × 1.25 × 60 Bolt (Included)
 - 2-φ8 or less Bolt

Notes:

- ※4. The dimensions that are not shown in BP 203 0-0 G (gasket option) area, please refer to BP 203 0-0 (piping option). They are the same.
- ※5. Roughness of mounting surface (O-ring seal surface) should be 6.3S or better.
Model No. Indication

JB 540-0 P

1. **Pressure Code**
 - 2: Operating Pressure Range 2.0 ~ 7.0MPa
 - 5: Operating Pressure Range 5.0 ~ 30.0MPa

2. **Tank Capacity**
 - 4: 40cm³
 - 6: 60cm³

3. **Design No.**
 - 0: Revision Number

4. **Piping Method**
 - P: BP Connection Option
 - S: Piping Option (Rc Thread)

Specifications

<table>
<thead>
<tr>
<th>Model No.</th>
<th>JB240-0-0</th>
<th>JB260-0-0</th>
<th>JB40-0-0</th>
<th>JB560-0-0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operating Pressure Range</td>
<td>2.0 ~ 7.0</td>
<td>5.0 ~ 30.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Withstanding Pressure</td>
<td>10.5</td>
<td>37.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tank Capacity</td>
<td>40.0</td>
<td>60.0</td>
<td>40.0</td>
<td>60.0</td>
</tr>
<tr>
<td>Circuit Capacity</td>
<td>800 or less</td>
<td>800 ~ 1200</td>
<td>800 or less</td>
<td>800 ~ 1200</td>
</tr>
<tr>
<td>Operating Temperature</td>
<td>0 ~ 70 °C</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Usable Fluid</td>
<td>General Hydraulic Oil Equivalent to ISO-VG-32</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mass</td>
<td>2.2</td>
<td>2.1</td>
<td>2.2</td>
<td>2.2</td>
</tr>
</tbody>
</table>

Notes:
- 6: Select the tank capacity based on the circuit capacity to be used.
- 7: Operating pressure and withstanding pressure are the pressure which is connected to R2 port. Please refer to Circuit Symbol.

External Dimensions

- 3-Ø9 Bolt Hole
- 3-Mounting Bolt (Included)
- Push Button Position
- R2 Port (Only for P/BP Connection Option)
- R1 Port (Only for S/Piping Option)
Automatic Air Bleed Valve

Model BX

Drains air out automatically in the hydraulic circuit

With Manual Air Bleed Valve

What is an automatic air bleed valve?
Placed on the top of the piping, this valve bleeds air automatically during repetition of the hydraulic pressure ON and OFF.

Operation Sequence

<table>
<thead>
<tr>
<th>Description</th>
<th>Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hydraulic pressure is OFF</td>
<td></td>
</tr>
<tr>
<td>Hydraulic pressure is ON</td>
<td></td>
</tr>
<tr>
<td>The air and oil is drained out from drain port of auto air bleed valve.</td>
<td>Drains air or oil out each time of hydraulic pressure is switched.</td>
</tr>
<tr>
<td>(Please refer to the specification for the drain volume.)</td>
<td></td>
</tr>
<tr>
<td>The check valve of auto air bleed valve is closed and drain-out is stopped.</td>
<td>There is no oil leakage from check valve after drain-out.</td>
</tr>
</tbody>
</table>
Model No. Indication

BX 001 0 - 02

Port Size
2 : Rc1/4 Thread
3 : Rc3/8 Thread

Design No. (Revision Number)

Specifications

<table>
<thead>
<tr>
<th>Model No.</th>
<th>BX0010-02</th>
<th>BX0010-03</th>
</tr>
</thead>
<tbody>
<tr>
<td>Max. Operating Pressure MPa</td>
<td>25</td>
<td></td>
</tr>
<tr>
<td>Cracking Pressure MPa</td>
<td>0.04</td>
<td></td>
</tr>
<tr>
<td>Withstanding Pressure MPa</td>
<td>37.5</td>
<td></td>
</tr>
<tr>
<td>Operating Temperature °C</td>
<td>0 ~ 70</td>
<td></td>
</tr>
<tr>
<td>Usable Fluid</td>
<td>General Hydraulic Oil Equivalent to ISO VG32</td>
<td></td>
</tr>
<tr>
<td>Drain Volume</td>
<td>Air only 10cm³ / Action</td>
<td>Oil only 0.6cm³ / Action</td>
</tr>
<tr>
<td>Minimum Oil Flow Rate</td>
<td>50cm³/min.</td>
<td></td>
</tr>
<tr>
<td>Mounting Position</td>
<td>Vertical Upward (See Outline Drawing)</td>
<td></td>
</tr>
<tr>
<td>Mass kg</td>
<td>0.4</td>
<td></td>
</tr>
<tr>
<td>3-P(R) Port</td>
<td>Rc1/4 Thread</td>
<td>Rc3/8 Thread</td>
</tr>
</tbody>
</table>

Notes:
1. It shows the drain volume returning from valve to tank at the moment when the circuit pressure switches from zero to normal operating pressure.
2. Air and oil are exhausted from T port. Please make sure to connect drain piping to tank.
3. Please make sure to mount this as shown in the drawing. In case of an incorrect position, air cannot be bled out.

External Dimensions
Non-Leak Pilot Check Valve

Model **BEP**
Model **BSP**

Pressure is maintained even when pressure supply is stopped.
Maintains pressure until hydraulic pressure is supplied to pilot port.

What is a non-leak pilot check valve?

Even if pressure supply from the hydraulic power source is stopped, the outgoing side pressure is held until the pressure is supplied to pilot port.

Even if the hydraulic power source is cut off due to energy saving (Stop hydraulic supply to incoming side) or blackout etc., it holds the pressure and prevents the workpiece drop off.

Circuit Symbol (BEP)

- **Incoming A Port**
- **Outgoing B Port**
- **Pilot Port**

※ This drawing shows BEP. (Please refer to the BSP page for the BSP circuit symbol.)
A filter is built in each A port and B port.
Since a filter is not built in the pilot port, please sufficiently perform flushing of piping and fitting to prevent foreign substances such as cutting chips from entering the circuit.

Classification

<table>
<thead>
<tr>
<th>Classification</th>
<th>Piping Model</th>
<th>Modular Model</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operating Range</td>
<td>1.0～7.0MPa / 7.0～30.0MPa</td>
<td>2.5～7.0MPa / 7.0～25.0MPa</td>
</tr>
</tbody>
</table>

Application Examples

- **BEP**
- **BSP**
Action Description

Circuit Reference ※ Two numbers of Non-Leak Pilot Check Valve BEP are used in this reference.

Operation Sequence

<table>
<thead>
<tr>
<th>When locking</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lock hydraulic pressure is ON. (Release hydraulic pressure is OFF.)</td>
<td>BEP pilot check valve (release side) opens and releases. The circuit pressure returns to tank.</td>
</tr>
<tr>
<td>Actuator locks by supplying hydraulic pressure to locking side. (Holding lock pressure even after hydraulic power source is OFF.)</td>
<td>Machining Process, etc.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>When releasing</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Release side hydraulic pressure is ON. (Locking side pressure is OFF.)</td>
<td>BEP pilot check valve (locking side) opens and the hydraulic oil in locking side circuit returns to tank.</td>
</tr>
<tr>
<td>Actuator releases by supplying the hydraulic pressure to release side. (It holds releasing pressure even if hydraulic power source is OFF.)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>In case of an emergency</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hydraulic power source is OFF due to a blackout.</td>
<td>The actuator will remain in the same state as it was before blackout by non-leak pilot check valve.</td>
</tr>
</tbody>
</table>
Non-Leak Pilot Check Valve Piping Model model BEP

Model No. Indication

BEP2 20 - 0

1 Pressure Code

2 : Operating Pressure Range 1.0～7.0MPa
5 : Operating Pressure Range 7.0～30.0MPa

2 Design No.

0 : Revision Number

Specifications

<table>
<thead>
<tr>
<th>Model No.</th>
<th>BEP220-0</th>
<th>BEP250-0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operating Pressure Range</td>
<td>1.0 ～ 7.0</td>
<td>7.0 ～ 30.0</td>
</tr>
<tr>
<td>Withstanding Pressure</td>
<td>10.5</td>
<td>37.5</td>
</tr>
<tr>
<td>Cracking Pressure</td>
<td>0.24</td>
<td></td>
</tr>
<tr>
<td>Min. Passage Area</td>
<td>28.3</td>
<td></td>
</tr>
<tr>
<td>Operating Temperature</td>
<td>0 ～ 70</td>
<td></td>
</tr>
<tr>
<td>Useable Fluid</td>
<td>General Hydraulic Oil Equivalent to ISO-VG-32</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Pilot Hydraulic Pressure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operating Pressure at 25MPa</td>
</tr>
<tr>
<td>Operating Pressure at 14MPa</td>
</tr>
<tr>
<td>Operating Pressure at 7MPa</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Mass</th>
<th>kg</th>
</tr>
</thead>
<tbody>
<tr>
<td>BEP220-0</td>
<td>1.4</td>
</tr>
<tr>
<td>BEP250-0</td>
<td>1.4</td>
</tr>
</tbody>
</table>

External Dimensions

BEP220-0 / BEP250-0

Markings: Incoming Port Side [A], Outgoing Port Side [B].
Front Surface [C] that shows free flowing direction from incoming side to outgoing side.

2-M8×1.25×60 Bolt (With Square Spring Washer) Included.
Cautions (BEP)

1. Do not place any devices that occurs oil leakage between outgoing side (B) port and actuators.
2. Non-leak function does not work properly if there is an oil leakage inside actuators.
3. Connecting the hydraulic source to outgoing (B) port and controlling hydraulic supply of A port with pilot port will lead to sealing malfunction. We offer other compatible products. Please contact us.
Non-Leak Pilot Check Valve

Model No. Indication

BSP3 5 0 - 0 W 6R (8.0MPa)

1 Pressure Code

2 : Operating Pressure Range 2.5~7.0MPa
5 : Operating Pressure Range 7.0~25.0MPa
(Please refer to the specification for pressure compensating valve.)

2 Design No.

0 : Revision Number

3 Circuit Symbol

A : A Port Check
W : A/B Port Check

Specifications

Without Pressure Compensating Valve

<table>
<thead>
<tr>
<th>Model No.</th>
<th>BSP320-0A</th>
<th>BSP350-0A</th>
<th>BSP320-0W</th>
<th>BSP350-0W</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operating Pressure Range MPA</td>
<td>2.5 ~ 7.0</td>
<td>7.0 ~ 25.0</td>
<td>2.5 ~ 7.0</td>
<td>7.0 ~ 25.0</td>
</tr>
<tr>
<td>Cracking Pressure MPA</td>
<td>0.05</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pilot Hydraulic Pressure MPA</td>
<td>More than one third of A2 port holding pressure</td>
<td>More than one third of A2 (B2) port holding pressure</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Min. Passage Area mm²</td>
<td>24</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Operating Temperature °C</td>
<td>0 ~ 70</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Usable Fluid</td>
<td>General Hydraulic Oil Equivalent to ISO-VG-32</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mass kg</td>
<td>1.1</td>
<td>1.1</td>
<td>1.5</td>
<td>1.5</td>
</tr>
</tbody>
</table>

With Pressure Compensating Valve

<table>
<thead>
<tr>
<th>Model No.</th>
<th>BSP320-0A4R</th>
<th>BSP350-0A6R(R)</th>
<th>BSP320-0A7R(R)</th>
<th>BSP350-0W4R(R)</th>
<th>BSP350-0W6R(R)</th>
<th>BSP350-0W7R(R)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operating Pressure Range MPA</td>
<td>2.5 ~ 7.0</td>
<td>7.0 ~ 15.5</td>
<td>15.5 ~ 25.0</td>
<td>2.5 ~ 7.0</td>
<td>7.0 ~ 15.5</td>
<td>15.5 ~ 25.0</td>
</tr>
<tr>
<td>Relief Set Pressure Range MPA</td>
<td>3.5 ~ 8.0</td>
<td>8.5 ~ 17.0</td>
<td>17.5 ~ 27.0</td>
<td>3.5 ~ 8.0</td>
<td>8.5 ~ 17.0</td>
<td>17.5 ~ 27.0</td>
</tr>
<tr>
<td>Relief Set Pressure MPA</td>
<td>Operating Pressure + 1.5</td>
<td>Operating Pressure + 2.0</td>
<td>Operating Pressure + 1.5</td>
<td>Operating Pressure + 2.0</td>
<td>Operating Pressure + 1.5</td>
<td>Operating Pressure + 2.0</td>
</tr>
<tr>
<td>Cracking Pressure MPA</td>
<td>0.05</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pilot Hydraulic Pressure MPA</td>
<td>More than one third of A2 port holding pressure</td>
<td>More than one third of A2 (B2) port holding pressure</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Min. Passage Area mm²</td>
<td>24</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Operating Temperature °C</td>
<td>0 ~ 70</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Usable Fluid</td>
<td>General Hydraulic Oil Equivalent to ISO-VG-32</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mass kg</td>
<td>1.1</td>
<td>1.1</td>
<td>1.5</td>
<td>1.5</td>
<td>1.5</td>
<td>1.5</td>
</tr>
</tbody>
</table>

Cautions (BSP)

1. Please note that pressure will be decreased by oil temperature drop when stopping pressure supply to A1 (B1) port and maintaining pressure on A2 (B2) port side.
2. The pressure relief valve is used for relieving volume of hydraulic pressure which is increased by oil temperature rise. It cannot be used for reducing supply pressure that is out of relief set pressure range.
3. When using with pressure compensating valve, if there is back pressure generated in T port, it cannot be relieved properly. Please contact us for further information.
Non-Leak Valve Unit
Manual Operation Model

Model BH

Manual Direction Control Valve with Non-Leak Function
A Variety of Circuits and Combination Options

What is a manual operating non-leak valve unit?
It is a manual operated direction control valve. It holds outgoing side hydraulic pressure even after the pressure power supply is cut off.

Even if the hydraulic power source is cut off due to energy saving (Stop hydraulic supply to incoming side) or blackout etc., it holds the pressure and prevents the workpiece drop off.

Application Examples

Activate the single action actuator manually by AA circuit.

Activate the double action actuator manually by NN circuit.

Circuit Symbol

A Normal Open

B Normal Close

NN Exclusively used for Double Action Circuit

Operation Sequence

1. While pulling lever

2. Up and down the lever (45°)

Operation Sequence

While pulling lever (to prevent wrong operation)
Operate the lever up and down.
● Model No. Indication

BH00 4 1 - NN - 0 - (7.0MPa)

1 Pressure Code
- 4 : Operating Pressure Range 2.5~7.0MPa
- 7 : Operating Pressure Range 6.0~30.0MPa
※ Pressure code is the same as BC unit if it is with pressure switch option or with 3 pressure gauge option.

2 Design No.
- 1 : Revision Number

3 Circuit Symbol
- A : Normal Open
- B : Normal Close
- NN : Exclusively used for Double Action Circuit
(Example) A, AA, AB, ANN, NNN

4 Usable Fluid
- 0 : General Hydraulic Oil
(Please refer to Hydraulic Fluid List)
- S : Silicon Oil
- G : Water-Glycol

● External Dimensions

![External Dimensions Diagram]

5 Option
- Blank : None (Standard: Piping Block is only on the right side.)
- GR : With Pressure Gauge installed on the right side. (Piping Block is on both sides.)
- GL : With Pressure Gauge installed on the left side. (Piping Block is on both sides.)
- H : With Piping Block installed on the left side. (P, Port)

6 Unit of Pressure Gauge
- Blank : MPa (Standard)
- P : PSI / Rc Thread Fitting

7 Normal Operating Pressure
Normal operating pressure is shown.
(Please indicate the pressure and the unit of measurement.)
(Example) (7.0MPa) (20.0MPa) (2000PSI) (200kg/cm²)

● Specifications

<table>
<thead>
<tr>
<th>Model No.</th>
<th>BH0041</th>
<th>BH0071</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operating Pressure Range MPa</td>
<td>2.5 ~ 7.0</td>
<td>6.0 ~ 30.0</td>
</tr>
<tr>
<td>Withstanding Pressure #1 MPa</td>
<td>10.5</td>
<td>37.5</td>
</tr>
<tr>
<td>Operating Temperature °C</td>
<td>0 ~ 70</td>
<td></td>
</tr>
<tr>
<td>Usable Fluid</td>
<td>General Hydraulic Oil Equivalent to ISO VG-32</td>
<td></td>
</tr>
</tbody>
</table>

Note:
※1. It shows withstanding pressure without pressure gauge.

![Specifications Table]

The Number of Valves (n) 1 2 3 4
- A 88 138 188 238
- B 69 119 169 219

![Diagrams and Tables]
Non-Leak Valve Unit
Electrical Control Model

Model BC

Electrical direction control valve with non-leak valve
A variety of circuits and combination options.

What is a non-leak valve unit (Electrical Control Model)?
It is a electrical directional control valve. It operates built-in non-leak valves by switching air solenoid valve electrically. Even if the pressure supply is cut off from the hydraulic power source, it maintains the pressure in outgoing side circuit.

Even if the hydraulic power source is cut off due to energy saving (Stop hydraulic supply to incoming side) or blackout etc., it holds the pressure and prevents the work piece drop off.

Application Examples
Control lock and release action of actuators electrically.

Circuit Symbol

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>Normal Open</td>
</tr>
<tr>
<td>U</td>
<td>Double Solenoid Valve Option</td>
</tr>
<tr>
<td>YY</td>
<td>Exclusively used for Double Action Circuit</td>
</tr>
</tbody>
</table>

Z | Normal Close

※ Filter is built in other than P_a port and R port.
Model No. Indication

BC00 4 1 - CC - 1 0 - (7.0MPa)

1 Pressure Code (Operating Pressure Range)

<table>
<thead>
<tr>
<th>Code</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>2.5~7.0MPa</td>
</tr>
<tr>
<td>4</td>
<td>4.0~7.0MPa</td>
</tr>
<tr>
<td>5</td>
<td>6.0~11.0MPa</td>
</tr>
</tbody>
</table>

2 Design No.

1 : Revision Number

3 Circuit Symbol

C : Normal Open
Z : Normal Close
U : Double Solenoid Valve Option
YY : Exclusively used for Double Action Circuit (Example) C, CZ, UU, UUYY
※ Please contact us if a different circuit is needed other than what is shown.

4 Control Voltage

1 : AC100V
2 : AC200V
3 : AC110V
4 : AC220V
5 : DC24V

5 Usable Fluid

0 : General Hydraulic Oil (Please refer to Hydraulic Fluid List)
S : Silicon Oil
G : Water-Glycol

6 Option

Blank : None (Standard: piping block is only on the right side.)
GR : With Pressure Gauge installed on right side. (Piping Block is on both sides.)
GL : With Pressure Gauge installed on left side. (Piping Block is on both sides.)
H : With Piping Block installed on the left side. (P: Port)

7 Unit of Pressure Gauge

Blank : MPa (Standard)
P : PSI / Rc Thread Fitting

8 Normal Operating Pressure

Normal operating pressure is shown.
(Please indicate the pressure and the unit of measurement.)
(Example) (7.0MPa) (20.0MPa) (2000PSI) (200kg/cm²)

Specifications

<table>
<thead>
<tr>
<th>Model No.</th>
<th>BC0031</th>
<th>BC0041</th>
<th>BC0051</th>
<th>BC0061</th>
<th>BC0071</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operating Pressure Range</td>
<td>MPa</td>
<td>2.5 ~ 4.5</td>
<td>4.0 ~ 7.0</td>
<td>6.0 ~ 11.0</td>
<td>10.0 ~ 17.5</td>
</tr>
<tr>
<td>Withstanding Pressure</td>
<td>kPa</td>
<td>10.5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Non-Leak Valve Part Number</td>
<td></td>
<td>BA2011-0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pressure Switch Part Number</td>
<td>JBA0700-0G-2002G</td>
<td>JBA0700-0G</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Operating Temperature</td>
<td>℃</td>
<td>0 ~ 70</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Usable Fluid</td>
<td>General Hydraulic Oil Equivalent to ISO-VG-32 (It depends on fluid code.)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes:
1. It shows withstanding without pressure gauge.
2. INC. (Pressure Increase Detection) of Pressure Switch (JBA) is set to 70% of operating pressure. Contact us for other set pressure.
3. For pressure gauge (for incoming pressure) option, piping ports are provided on both sides.

External Dimensions

Air Solenoid Valve

Terminal Block

JBA Pressure Switch

BA Valve

Pressure Gauge (for incoming pressure)

GL Option installed on the left side

4-M8 Bolt Hole

4-M8 x 1.25 x 16 Bolt Included With Spring Washer

Conduit Hole

The Number of Valves (n) | 1 | 2 | 3 | 4 |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>90</td>
<td>140</td>
<td>190</td>
<td>240</td>
</tr>
<tr>
<td>B</td>
<td>70</td>
<td>120</td>
<td>170</td>
<td>220</td>
</tr>
</tbody>
</table>

Notes:
1. When circuit symbol is U and YY.
2. Dimension of valve unit with left side piping block option.
Cautions

Installation Notes (For Hydraulic Series)

1) Check the Usable Fluid
 - Use the appropriate fluid by referring to the Hydraulic Fluid List.

2) Procedure before Piping
 - The pipeline, piping connector and fixture circuits should be cleaned
 thoroughly before pipping.
 - The fuel and cutting chips in the circuit may lead to fluid leakage
 and malfunction.
 - There is no filter provided with Kosmek’s product except for a part
 of valves which prevents foreign materials and contaminants from
 getting into the circuit.

3) Applying Sealing Tape
 - Wrap with tape 1 to 2 times following the screw direction.
 - Pieces of the sealing tape can lead to oil leakage and malfunction.
 - In order to prevent a foreign substance from going into the product
 during the piping work, it should be carefully cleaned before working.

4) Air Bleeding of the Hydraulic Circuit
 - If the hydraulic circuit has excessive air, the action time may become
 very long. If air enters the circuit after connecting the hydraulic port
 or under the condition of no air in the oil tank, please perform
 the following steps.

 ① Reduce hydraulic pressure to less than 2MPa.
 ② Loosen the cap nut of pipe fitting closest to the clamp by one full turn.
 ③ Wiggle the pipeline to loosen the outlet of pipe fitting.

 Hydraulic fluid mixed with air comes out.

 ④ Tighten the cap nut after bleeding.
 ⑤ It is more effective to bleed air at the highest point inside the circuit
 or at the end of the circuit.

 (Set an air bleeding valve at the highest point inside the circuit.)

5) Checking Looseness and Retightening
 - At the beginning of the machine installation, the bolt and nut may
 be tightened lightly. Check the looseness and re-tighten as required.

Hydraulic Fluid List

<table>
<thead>
<tr>
<th>Maker</th>
<th>Anti-Wear Hydraulic Oil</th>
<th>Multi-Purpose Hydraulic Oil</th>
</tr>
</thead>
<tbody>
<tr>
<td>Showa Shell Sekiyu</td>
<td>Tellus S2 M 32</td>
<td>Morina S2 B 32</td>
</tr>
<tr>
<td>Idemitsu Kosan</td>
<td>Daphne Hydraulic Fluid 32</td>
<td>Daphne Super Multi Oil 32</td>
</tr>
<tr>
<td>JX Nippon Oil & Energy</td>
<td>Super Hyrando 32</td>
<td>Super Mulpus DX 32</td>
</tr>
<tr>
<td>Cosmo Oil</td>
<td>Cosmo Hydro AW32</td>
<td>Cosmo New Mighty Super 32</td>
</tr>
<tr>
<td>ExxonMobil</td>
<td>Mobil DYE 24</td>
<td>Mobil DYE 24 Light</td>
</tr>
<tr>
<td>Matsumura Oil</td>
<td>Hydol AW-32</td>
<td></td>
</tr>
<tr>
<td>Castrol</td>
<td>Hyspin AWS 32</td>
<td></td>
</tr>
</tbody>
</table>

Note: As it may be difficult to purchase the products as shown in the table from overseas, please contact the respective manufacturer.
Notes on Hydraulic Cylinder Speed Control Unit

Please pay attention to the cautions below. Design the hydraulic circuit for controlling the action speed of hydraulic cylinder. Improper circuit design may lead to malfunctions and damages. Please review the circuit design in advance.

Flow Control Circuit for Single Acting Cylinder
For spring return single acting cylinders, restricting flow during release can extremely slow down or disrupt release action. The preferred method is to control the flow during the lock action using a valve that has free-flow in the release direction. It is also preferred to provide a flow control valve at each actuator.

Accelerated clamping speed by excessive hydraulic flow to the cylinder may sustain damage. In this case add flow control to regulate flow. (Please add flow control to release flow if the lever weight is put on at the time of release action when using swing clamps.)

Flow Control at the Release Side

Flow Control Circuit for Double Acting Cylinder
Flow control circuit for double acting cylinder should have meter-out circuits for both the lock and release sides. Meter-in control can have adverse effect by presence of air in the system. However, in the case of controlling LKE, TMA, TLA, both lock side and release side should be meter-in circuit.

Refer to P.75 for speed adjustment of LKE.
For TMA and TLA, if meter-out circuit is used, abnormal high pressure is created, which causes oil leakage and damage.

[Meter-out Circuit] (Except LKE/TMA/TLA)

[Meter-in Circuit] (LKE/TMA/TLA must be controlled with meter-in.)

In the case of meter-out circuit, the hydraulic circuit should be designed with the following points.
① Single acting components should not be used in the same flow control circuit as the double acting components. The release action of the single acting cylinders may become erratic or very slow.

Refer to the following circuit when both the single acting cylinder and double acting cylinder are used together.
② Separate the control circuit.

③ Reduce the influence of double acting cylinder control unit. However, due to the back pressure in tank line, single action cylinder is activated after double action cylinder works.

④ In the case of meter-out circuit, the inner circuit pressure may increase during the cylinder action because of the fluid supply. The increase of the inner circuit pressure can be prevented by reducing the supplied fluid beforehand via the flow control valve. Especially when using sequence valve or pressure switches for clamping detection, if the back pressure is more than the set pressure then the system will not work as it is designed to.
Cautions

Notes on Handling

1) It should be handled by qualified personnel.
 - The hydraulic machine and air compressor should be handled and maintained by qualified personnel.
2) Do not handle or remove the machine unless the safety protocols are ensured.
 - The machine and equipment can only be inspected or prepared when it is confirmed that the preventive devices are in place.
3) Before the machine is removed, make sure that the above-mentioned safety measures are in place. Shut off the air of hydraulic source and make sure no pressure exists in the hydraulic and air circuit.
4) After stopping the machine, do not remove until the temperature cools down.
5) Make sure there is no abnormality in the bolts and respective parts before restarting the machine or equipment.
6) Do not touch clamp (cylinder) while clamp (cylinder) is working. Otherwise, your hands may be injured due to clinching.

Maintenance and Inspection

1) Removal of the Machine and Shut-off of Pressure Source
 - Before the machine is removed, make sure that the above-mentioned safety measures are in place. Shut off the air of hydraulic source and make sure no pressure exists in the hydraulic and air circuit.
 - Make sure there is no abnormality in the bolts and respective parts before restarting.
2) Regularly clean the area around the piston rod and plunger.
 - If it is used when the surface is contaminated with dirt, it may lead to packing seal damage, malfunctioning, fluid leakage and air leaks.
3) Please clean out the reference surface regularly (taper reference surface and seating surface) of locating machine. (VS/VT/VFL/VFM/VFJ/VFK/VWS/VWM/VWK/VX/VXF)
 - Location products, except VX/VXF model, can remove contaminants with cleaning functions.
 - When installing pallets makes sure there is no thick sludge like substances on pallets.
 - Continuous use with dirt on components will lead to locating functions not work properly, leaking and malfunction.
4) If disconnecting by couplers on a regular basis, air bleeding should be carried out daily to avoid air mixed in the circuit.
5) Regularly tighten nuts, bolts, pins, cylinders and pipe line to ensure proper use.
6) Make sure the hydraulic fluid has not deteriorated.
7) Make sure there is smooth action and no abnormal noise.
 - Especially when it is restarted after left unused for a long period, make sure it can be operated correctly.
8) The products should be stored in the cool and dark place without direct sunshine or moisture.
9) Please contact us for overhaul and repair.
Warranty

1) Warranty Period
- The product warranty period is 18 months from shipment from our factory or 12 months from initial use, whichever is earlier.

2) Warranty Scope
- If the product is damaged or malfunctions during the warranty period due to faulty design, materials or workmanship, we will replace or repair the defective part at our expense. Defects or failures caused by the following are not covered.
 ① If the stipulated maintenance and inspection are not carried out.
 ② If the product is used while it is not suitable for use based on the operator’s judgment, resulting in defect.
 ③ If it is used or handled in inappropriate way by the operator.
 (Including damage caused by the misconduct of the third party.)
 ④ If the defect is caused by reasons other than our responsibility.
 ⑤ If repair or modifications are carried out by anyone other than Kosmek, or without our approval and confirmation, it will void warranty.
 ⑥ Other caused by natural disasters or calamities not attributable to our company.
 ⑦ Parts or replacement expenses due to parts consumption and deterioration.
 (Such as rubber, plastic, seal material and some electric components.)

Damages excluding from direct result of a product defect shall be excluded from the warranty.
Sales Offices

Sales Offices across the World

Japan
TEL. +81-78-991-5162 FAX. +81-78-991-8787
KOSMEK LTD. 1-5, 2-chome, Murotani, Nishi-ku, Kobe-city, Hyogo, Japan 651-2241
〒651-2241 兵庫県神戸市西区室谷2丁目1番5号

Overseas Sales

USA
TEL. +1-630-620-7650 FAX. +1-630-620-9015
KOSMEK（USA）LTD. 650 Springer Drive, Lombard, IL 60148 USA

Mexico
TEL. +52-442-161-2347
KOSMEK USA Mexico Office Blvd Jurica la Campana 1040, B Colonia Punta Juriquilla Queretaro, QRO 76230 Mexico

EUROPE
TEL. +43-463-287587 FAX. +43-463-287587-20
KOSMEK EUROPE GmbH Schleppenplatz 2 9020 Klagenfurt am Wörthersee Austria

Asia

China
KOSMEK（CHINA）LTD. TEL.+86-21-54253000 FAX.+86-21-54253709
考世美(上海)貿易有限公司
Room601, RIVERSIDE PYRAMID No.55, Lane21, Pusan Rd, Pudong Shanghai 200125, China

India
TEL.+91-9880561695
KOSMEK LTD. - INDIA F 203, Level-2, First Floor, Prestige Center Point, Cunningham Road, Bangalore -560052 India

Thailand
TEL. +66-2-300-5132 FAX. +66-2-300-5133
Thailand Representative Office 67 Soi 58, RAMA 9 Rd., Suanluang, Suanluang, Bangkok 10250, Thailand

Taiwan
TEL. +886-2-82261860 FAX. +886-2-82261890
Full Life Trading Co., Ltd. 豐生貿易有限公司
16F-4, No.2, Jian Ba Rd., Zhonghe District, New Taipei City Taiwan 23511

Philippines
TEL.+63-2-310-7286 FAX. +63-2-310-7286
G.E.T. Inc, Phil. Victoria Wave Special Economic Zone Mt. Apo Building, Brgy. 186, North Caloocan City, Metro Manila, Philippines 1427

Indonesia
TEL. +62-21-5818632 FAX. +62-21-5814857
P.T PANDU HYDRO PNEUMATICS Ruko Green Garden Blok Z-Ⅱ No.51 Rt.005 Rw.008 Kedoya Utara-Kebon Jeruk Jakarta Barat 11520 Indonesia

Sales Offices in Japan

Head Office
TEL.078-991-5115 FAX.078-991-8787
〒651-2241 兵庫県神戸市西区室谷2丁目1番5号

Osaka Sales Office

Overseas Sales

Tokyo Sales Office
TEL.048-652-8839 FAX.048-652-8828
〒331-0815 埼玉県さいたま市北区大成町4丁目81番地

Nagoya Sales Office
TEL.0566-74-8778 FAX.0566-74-8808
〒446-0076 愛知県安城市安城市町2丁目10番地

Fukuoka Sales Office
TEL.092-433-0424 FAX.092-433-0426
〒812-0006 福岡県福岡市博多区上牟田1丁目8-10-101