New Hydraulic
Double Acting Work Support

Shorter Cycle Time • Back Pressure Resistant
Hydraulic Double Acting Work Support

Model TND

Shorter Cycle Time • Back Pressure Resistant
Pioneer and leading innovator of hydraulic work support collet technology.

Introducing New Double Acting Work Support

Features of Double Acting Work Support

● For Shorter Cycle Time
 Compared to single acting work support, double acting work support is able to control release action with hydraulic pressure, allowing for shorter cycle time.

● For Automation Systems
 Ensuring release action with hydraulic pressure, it is suitable for automation systems. Also it can be used even for environment where back pressure likely occurs.

● Compact Body
 Double acting, yet compact.

● Long Stroke Model Available
 Offering the standard stroke model and the long stroke model. For application standardization.

 • Standard Stroke Model
 | Model No. | TND0600-□ | TND1000-□ | TND1600-□ |
 |-----------|------------|------------|------------|
 | Plunger Stroke mm | 8 | 10 | 12 |

 • Long Stroke Model
 | Model No. | TND0600-Q | TND1000-Q | TND1600-Q |
 |-----------|------------|------------|------------|
 | Plunger Stroke mm | 16 | 20 | 24 |
Cross Section

- **Excellent Coolant Resistance**
- **Elastic Spacer to Press Down the Collet**
- **Large Clearance between the Collet and Plunger**

> It adopts the collet structure, the first in the world, ensuring powerful support and smooth action.

KOSMEK was the first to develop the collet design in 1996. Compared with the traditional sleeve design, it ensures powerful gripping force via a wedge effect. In addition, a larger gap between collet and plunger is designed to prevent sticking and allow smoother action.

- **Concrete Workpiece Touch**

As the collet gripping the plunger is always pressed downwards, it helps prevent tilting when locked and the clearance with the workpiece.

- **Certain Sequence Action**

As it is equipped with a powerful sequencing spring, the action sequences as such; Plunger goes up → workpiece touches → collet locks. This is carried out via one hydraulic circuit system.

- **Excellent Coolant Resistance**

Our exclusive dust seal is designed to protect against high pressure coolant. It also has high durability against chlorine-based coolant by using a sealing material with excellent chemical resistance.
Action Description

- **Plunger**
 - Work Support
 - Release Hyd. Pressure: ON
 - Lock Hyd. Pressure: OFF
 - The state of plunger is down.

- **Gripping the plunger**
 - Release Hyd. Pressure: OFF
 - Lock Hyd. Pressure: ON
 - It doesn't move even if pressed from the top. !!

Internal Action Description

- **Workpiece**
- **Contact Bolt**
- **Plunger**
- **Collet**
- **Steel Ball**
- **Piston**
- **Plunger Piston**

At Released
- Plunger is lowered by release pressure.

Plunger extends
- Plunger piston is extended by releasing release pressure and supplying lock pressure. Plunger rises via spring force to the workpiece with this action.

Contact bolt makes contact with workpiece
- Plunger piston rises to the upper limit even after contact bolt makes contact with workpiece.

Locked State
1. The piston starts to press down via hydraulic pressure.
2. The tapering action between the piston and collet affects the steel ball so that the collect can grip the plunger with even and strong power to generate the supporting force.
Model No. Indication

TND 060 0 - L -
1 2 3 4

1 Support Force

060 : Support Force 7.1kN at 35MPa
100 : Support Force 11.7kN at 35MPa
160 : Support Force 16.3kN at 35MPa

2 Design No.

0 : Revision Number

3 Plunger Spring Force

L : Low Spring Force
H : High Spring Force
Blank : For 4 Option Q

4 Option

Blank : Hydraulic Advance Model (Standard)
Q : Hydraulic Advance Long Stroke Model

Specifications

<table>
<thead>
<tr>
<th>Option</th>
<th>Blank</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model No.</td>
<td>TND060-Q</td>
</tr>
<tr>
<td>Support Force at 35MPa</td>
<td>7.1</td>
</tr>
<tr>
<td>Support force (Calculation Formula) kN</td>
<td>0.24×P-1.18</td>
</tr>
<tr>
<td>Plunger Stroke mm</td>
<td>8</td>
</tr>
<tr>
<td>Cylinder Capacity cm³</td>
<td>6.2×L-7.8</td>
</tr>
<tr>
<td>Plunger Stroke (Retract) cm³</td>
<td>0.6</td>
</tr>
<tr>
<td>Plunger Stroke (Retract) cm³</td>
<td>0.2</td>
</tr>
<tr>
<td>Plunger Spring Force N</td>
<td>4.7×L-7.8</td>
</tr>
<tr>
<td>Max. Operating Pressure MPa</td>
<td>35</td>
</tr>
<tr>
<td>Min. Operating Pressure MPa</td>
<td>7</td>
</tr>
<tr>
<td>Operating Temperature °C</td>
<td>0~70</td>
</tr>
<tr>
<td>Mass kg</td>
<td>0.25</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Option</th>
<th>Q</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model No.</td>
<td>TND060-Q</td>
</tr>
<tr>
<td>Support Force at 35MPa</td>
<td>7.1</td>
</tr>
<tr>
<td>Support force (Calculation Formula) kN</td>
<td>0.24×P-1.18</td>
</tr>
<tr>
<td>Plunger Stroke mm</td>
<td>16</td>
</tr>
<tr>
<td>Cylinder Capacity cm³</td>
<td>6.2×L-7.8</td>
</tr>
<tr>
<td>Plunger Stroke (Retract) cm³</td>
<td>1.0</td>
</tr>
<tr>
<td>Plunger Stroke (Retract) cm³</td>
<td>0.4</td>
</tr>
<tr>
<td>Plunger Spring Force N</td>
<td>6.2×L-12.9</td>
</tr>
<tr>
<td>Max. Operating Pressure MPa</td>
<td>35</td>
</tr>
<tr>
<td>Min. Operating Pressure MPa</td>
<td>7</td>
</tr>
<tr>
<td>Operating Temperature °C</td>
<td>0~70</td>
</tr>
<tr>
<td>Mass kg</td>
<td>0.3</td>
</tr>
</tbody>
</table>

Notes:
1. P in the formula for support force indicates the hydraulic pressure (MPa).
2. The plunger spring force indicates the spring design value. It may vary depending on sliding resistance of the plunger and characteristic of the spring, etc. Please read it as a reference value of workpiece contact force.
Performance Curve (TND□ : Hydraulic Advance Model)

Applicable Model

TND □ □ □ - □ □ - Blank

1 Body Size 2 Option : Blank

Support Force Graph ※ This graph shows the support force under static load condition.

Support Force (kN)

<table>
<thead>
<tr>
<th>Model No.</th>
<th>Hydraulic Pressure (MPa)</th>
<th>TND0600</th>
<th>TND1000</th>
<th>TND1600</th>
</tr>
</thead>
<tbody>
<tr>
<td>35</td>
<td>7.1</td>
<td>11.7</td>
<td>16.3</td>
<td></td>
</tr>
<tr>
<td>32.5</td>
<td>6.5</td>
<td>10.7</td>
<td>14.9</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>5.9</td>
<td>9.8</td>
<td>13.6</td>
<td></td>
</tr>
<tr>
<td>27.5</td>
<td>5.3</td>
<td>8.8</td>
<td>12.2</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>4.7</td>
<td>7.8</td>
<td>10.9</td>
<td></td>
</tr>
<tr>
<td>22.5</td>
<td>4.1</td>
<td>6.8</td>
<td>9.5</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>3.6</td>
<td>5.9</td>
<td>8.1</td>
<td></td>
</tr>
<tr>
<td>17.5</td>
<td>3.0</td>
<td>4.9</td>
<td>6.8</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>2.4</td>
<td>3.9</td>
<td>5.4</td>
<td></td>
</tr>
<tr>
<td>12.5</td>
<td>1.8</td>
<td>2.9</td>
<td>4.1</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>1.2</td>
<td>2.0</td>
<td>2.7</td>
<td></td>
</tr>
<tr>
<td>7.5</td>
<td>0.6</td>
<td>1.0</td>
<td>1.4</td>
<td></td>
</tr>
</tbody>
</table>

Support force formula (kN) 0.24×P-1.18 0.39×P-1.95 0.54×P-2.72

Note : ※1 : Operating Hydraulic Pressure (MPa)

Load / Displacement Graph ※ This graph shows the static displacement at 35 MPa hydraulic pressure.
Performance Curve (TND-Q : Hydraulic Advance Long Stroke Model)

Applicable Model

TND 060-0 - Q

* Option : Q

* Body Size

Support Force Graph

※ This graph shows the support force under static load condition.

<table>
<thead>
<tr>
<th>Support Force (kN)</th>
</tr>
</thead>
<tbody>
<tr>
<td>TND1600-Q</td>
</tr>
<tr>
<td>TND1000-Q</td>
</tr>
<tr>
<td>TND0600-Q</td>
</tr>
</tbody>
</table>

Support Force (kN)

<table>
<thead>
<tr>
<th>Model No.</th>
<th>TND0600-Q</th>
<th>TND1000-Q</th>
<th>TND1600-Q</th>
</tr>
</thead>
<tbody>
<tr>
<td>35</td>
<td>7.1</td>
<td>11.7</td>
<td>16.3</td>
</tr>
<tr>
<td>32.5</td>
<td>6.5</td>
<td>10.7</td>
<td>14.9</td>
</tr>
<tr>
<td>30</td>
<td>5.9</td>
<td>9.8</td>
<td>13.6</td>
</tr>
<tr>
<td>27.5</td>
<td>5.3</td>
<td>8.8</td>
<td>12.2</td>
</tr>
<tr>
<td>25</td>
<td>4.7</td>
<td>7.8</td>
<td>10.9</td>
</tr>
<tr>
<td>22.5</td>
<td>4.1</td>
<td>6.8</td>
<td>9.5</td>
</tr>
<tr>
<td>20</td>
<td>3.6</td>
<td>5.9</td>
<td>8.1</td>
</tr>
<tr>
<td>17.5</td>
<td>3.0</td>
<td>4.9</td>
<td>6.8</td>
</tr>
<tr>
<td>15</td>
<td>2.4</td>
<td>3.9</td>
<td>5.4</td>
</tr>
<tr>
<td>12.5</td>
<td>1.8</td>
<td>2.9</td>
<td>4.1</td>
</tr>
<tr>
<td>10</td>
<td>1.2</td>
<td>2.0</td>
<td>2.7</td>
</tr>
<tr>
<td>7.5</td>
<td>0.6</td>
<td>1.0</td>
<td>1.4</td>
</tr>
</tbody>
</table>

Note: ※ 1. P : Operating Hydraulic Pressure (MPa)

Load / Displacement Graph

※ This graph shows the static load displacement at 35 MPa hydraulic pressure.

※ The Displacement of TND-Q : Long Stroke Model is larger than that of TND : Standard Model.
Hydraulic Double Acting Work Support Standard Model

External Dimensions : TND0600
- This drawing shows the released state of TND0600 (before the plunger is lifted).

External Dimensions : TND1000
- This drawing shows the released state of TND1000 (before the plunger is lifted).

Machining Dimensions of Mounting Area
External Dimensions : TND1600

※ This drawing shows the released state of TND1600 [before the plunger is lifted].

![External Dimensions Diagram]

- Contact Bolt (Included)
- M12 × 1.75 Thread Depth 13
- φ 22
- φ 16.5
- φ 45

![Machining Dimensions of Mounting Area]

Machining Dimensions of Mounting Area

- O-ring (Included) AS568-012(70°)
- M12 × 1.75 Thread
- Contact Bolt (Included)
- φ 49.4 ± 0.06

Note:

1. Air vent port must be open to the atmosphere, and prevent coolant and chips from entering the air vent port.
 (Please refer to "Appropriate Measures for the Air Vent Port (P.13)."

Model No. Indication

TND 060 0 - L H - Blank

Model No.

- TND060-
- TND1000-
- TND1600-

Tightening Torque for Main Body

<table>
<thead>
<tr>
<th>Model No.</th>
<th>TND0600-</th>
<th>TND1000-</th>
<th>TND1600-</th>
</tr>
</thead>
<tbody>
<tr>
<td>Torque for Main Body</td>
<td>50 N·m</td>
<td>63 N·m</td>
<td>80 N·m</td>
</tr>
</tbody>
</table>

Note:

1. The torque for mounting the body should be as indicated in the table above.
 Excessive torque will cause deformation of the body leading to operation failure.
 Also, with insufficient torque, O-ring will be damaged resulting in oil leakage.

Contact Bolt Design Dimensions

※Reference for designing a contact bolt (attachment) by customer other than the included contact bolt.

![Contact Bolt Design Dimensions Diagram]

<table>
<thead>
<tr>
<th>Corresponding Product Model</th>
<th>TND0600-</th>
<th>TND1000-</th>
<th>TND1600-</th>
</tr>
</thead>
<tbody>
<tr>
<td>EB</td>
<td>7.4</td>
<td>7.4</td>
<td>9.4</td>
</tr>
<tr>
<td>EC</td>
<td>12.5</td>
<td>12.5</td>
<td>16.5</td>
</tr>
<tr>
<td>ED</td>
<td>6</td>
<td>6</td>
<td>7.5</td>
</tr>
<tr>
<td>EE</td>
<td>10</td>
<td>10</td>
<td>12</td>
</tr>
<tr>
<td>EF</td>
<td>7.3</td>
<td>7.3</td>
<td>8.7</td>
</tr>
<tr>
<td>EG</td>
<td>1.7</td>
<td>1.7</td>
<td>2.3</td>
</tr>
<tr>
<td>EX</td>
<td>M10 × 1.5</td>
<td>M10 × 1.5</td>
<td>M12 × 1.75</td>
</tr>
<tr>
<td>O-ring</td>
<td>AS568-010(70°)</td>
<td>AS568-010(70°)</td>
<td>AS568-012(70°)</td>
</tr>
</tbody>
</table>

Notes:

1. It should be designed according to the mass of contact bolt and the plunger spring force.
2. If using a contact bolt with different dimensions than those shown above, spring force will be different from the values on the catalog, and the plunger spring will be damaged leading to malfunctions.
External Dimensions : TND0600-Q

- This drawing shows the released state of TND0600-Q (before the plunger is lifted).

![Diagram of TND0600-Q](image)

Machining Dimensions of Mounting Area

- O-ring (Included)
 - AS568-010(70°)
- M10 x 1.5 Thread

- Contact Bolt (Included)

- O-ring (Included)
 - AS568-015(90°)
- M32 x 1.5 Thread

- O-ring (Included)
 - AS568-015(90°)
- M32 x 1.5 Thread

External Dimensions : TND1000-Q

- This drawing shows the released state of TND1000-Q (before the plunger is lifted).

![Diagram of TND1000-Q](image)

Machining Dimensions of Mounting Area

- O-ring (Included)
 - AS568-010(70°)
- M10 x 1.5 Thread

- Contact Bolt (Included)

- O-ring (Included)
 - AS568-010(70°)
- M38 x 1.5 Thread

- O-ring (Included)
 - AS568-010(70°)
- M38 x 1.5 Thread

Air vent port can be machined within the range of ...
External Dimensions : TND1600-Q

※ This drawing shows the released state of TND1600-Q (before the plunger is lifted).

![Diagram of TND1600-Q]

Note:
※ 1. Air vent port must be open to the atmosphere, and prevent coolant and chips from entering the air vent port. (Please refer to “Appropriate Measures for the Air Vent Port (P.13).”)

Model No. Indication

![Model No. Indication]

External Dimensions

<table>
<thead>
<tr>
<th>Model No.</th>
<th>TND0600-Q</th>
<th>TND1000-Q</th>
<th>TND1600-Q</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tightening Torque for Main Body</td>
<td>50 N·m</td>
<td>63 N·m</td>
<td>80 N·m</td>
</tr>
</tbody>
</table>

Note:
※ 2. The torque for mounting the body should be as indicated in the table above. Excessive torque will cause deformation of the body leading to operation failure. Also, with insufficient torque, O-ring will be damaged resulting in oil leakage.

Contact Bolt Design Dimensions

※Reference for designing a contact bolt (attachment) by customer other than the included contact bolt.

![Diagram of Contact Bolt Design Dimensions]

Notes:
1. It should be designed according to the mass of contact bolt and the plunger spring force.
2. If using a contact bolt with different dimensions than those shown above, spring force will be different from the values on the catalog, and the plunger spring will be damaged leading to malfunctions.
Air Purge Function

The special dust seal that features low friction and high sealing capabilities is used in TND. However, when using TND in worse condition, air purge function is available by providing the circuit to the air vent port like the drawing below.

Structure Drawing

TND Plunger Retracting and at Releasing State

TND Plunger Advancing and at Locking State

Workpiece Contact Force Formula when Using Air Purge Function

Workpiece Contact Force (N) = Plunger Spring Force (N) + Supply Air Pressure (MPa) × U² (mm) × π / 4

<table>
<thead>
<tr>
<th>Model No.</th>
<th>TND0600-Q</th>
<th>TND1000-Q</th>
<th>TND1600-Q</th>
</tr>
</thead>
<tbody>
<tr>
<td>U (mm)</td>
<td>15</td>
<td>18</td>
<td>22</td>
</tr>
<tr>
<td>Plunger Spring Force</td>
<td>L: Low Spring Force</td>
<td>4.7~7.8</td>
<td>5.8~9.7</td>
</tr>
<tr>
<td></td>
<td>H: High Spring Force</td>
<td>6.2~11.0</td>
<td>7.8~13.5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Model No.</th>
<th>TND0600-Q</th>
<th>TND1000-Q</th>
<th>TND1600-Q</th>
</tr>
</thead>
<tbody>
<tr>
<td>U (mm)</td>
<td>15</td>
<td>18</td>
<td>22</td>
</tr>
<tr>
<td>Plunger Spring Force</td>
<td>N</td>
<td>6.2~12.9</td>
<td>7.8~20.4</td>
</tr>
</tbody>
</table>

Notes:

1. Please prepare a stopper if necessary when using light and/or thin workpiece. Otherwise it might be pushed up by work support.
2. The plunger spring force indicates the spring design value. It may vary depending on sliding resistance of the plunger and characteristic of the spring, etc. Please read it as a reference value of workpiece contact force.

Notes

1. If the plunger advances too fast, it may bounce back and locks itself resulting in a gap with the workpiece, and possible damage to the internal parts due to the impact. Set the plunger action time at 0.5~1.0 sec. to adjust the air supply with the flow control valve with check valve (meter-in), and make sure that there is no clearance with the workpiece for operation.
2. Air cannot be vented as the air supply pressure is too low because the cracking pressure at the dust seal lip is about 0.1MPa.
Plunger Spring Design Dimension

Reference for designing a plunger spring by customer other than the included plunger spring.

This drawing shows the released state.

![Diagram of plunger spring design dimension](image)

Table 1

<table>
<thead>
<tr>
<th>Component/Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>TND0600-Q</td>
</tr>
<tr>
<td>FA</td>
</tr>
<tr>
<td>FB</td>
</tr>
<tr>
<td>FD</td>
</tr>
<tr>
<td>FE</td>
</tr>
<tr>
<td>FF<sub>4</sub></td>
</tr>
<tr>
<td>FG<sub>4</sub></td>
</tr>
<tr>
<td>Stroke</td>
</tr>
</tbody>
</table>

Table 2

<table>
<thead>
<tr>
<th>Component/Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>TND0600-Q</td>
</tr>
<tr>
<td>FA</td>
</tr>
<tr>
<td>FB</td>
</tr>
<tr>
<td>FD</td>
</tr>
<tr>
<td>FE</td>
</tr>
<tr>
<td>FF<sub>4</sub></td>
</tr>
<tr>
<td>FG<sub>4</sub></td>
</tr>
<tr>
<td>Stroke</td>
</tr>
</tbody>
</table>

Note:

- 4. When designing a spring, make sure that the spring set length is below FF dimension and the spring contact length is below FG dimension.
Cautions

Notes for Design

1) Check Specifications
- Please use each product according to the specifications.
- When using a work support opposite to the clamp, set the support force at more than 1.5 times the clamping force.

2) Notes for Circuit Design
- Please read "Notes on Hydraulic Cylinder Speed Control Circuit" on P.15 to assist with proper hydraulic circuit designing. Improper circuit design may lead to malfunctions and damages.

3) Install temporary stopper for workpiece if necessary.
- When multiple work supports are used for a light workpiece, the plunger spring force may be higher than the weight of the workpiece causing it to lift the workpiece.

4) Contact bolt or attachment is required for the plunger.
- Always use contact bolt or attachment with the plunger. Plunger does not rise since plunger spring is free to move.
- You must set an O-ring at the attachment. With contact bolt or attachment removed, cutting fluid or other foreign material will get in easily, causing malfunction.

5) When using on a welding fixture, plunger surface should be protected.
- If spatter gets onto the sliding surface it may lead to a sliding failure and an insufficient support function.

6) Adjust plunger operation time with fluid volume.
- A rough guideline for the full stroke is between 0.5 and 1 second.
- Use a flow control valve with a check valve (meter-in).
- In the case of meter-out circuit, the inner circuit pressure may increase during the cylinder action depending on fluid volume.
- If the plunger advances too fast, it may bounce back and locks itself resulting in a gap with the workpiece.

7) Appropriate Measures for Air Vent Port
- The work support, although only slightly, breathes like a single-acting cylinder. Consider the environment and avoid cutting fluid, coolant or any contaminants.
- If using it without air vent port, it will not function properly. Make sure it breathes without the influence of cutting chips or coolant.

8) Make sure offset load and component of force do not affect the product.
- If using the product as illustrated below, the displacement against load will be increased. Also large load will damage the internal parts.

9) Keep the right weight when designing attachments.
- Make sure the weight of attachments is 30% or less of the plunger spring force.

Ex.) In the case of TND0600-L with the plunger spring force 4.7-7.8N. The maximum mass of contact bolt = 4.7×0.3/9.807=0.14kg Since it may vary depending on sliding resistance of the plunger and characteristic of the spring, it is recommended to design the contact bolt as light as possible.

- The dimensions of the mounting thread area need to be processed according to the design dimensions for contact bolts as shown on respective product pages.
- Since the attachment is also used for fixing the plunger spring, if the dimensions of thread part are different, it will cause spring force fluctuation or damage leading to malfunction.
Installation Notes

1) Check Fluid
- Please use the appropriate fluid by referring to the Hydraulic Fluid List.

2) Procedure before Piping
- The pipeline, piping connector and fixture circuits should be cleaned by thorough flushing.
- The dust and cutting chips in the circuit may lead to fluid leakage and malfunction.
- There is no filter provided with Kosmek’s product except for a part of valves which prevents foreign materials and contaminants from getting into the circuit.

3) Applying Sealing Tape
- Wrap with tape 1 to 2 times following the screw direction.
- Pieces of the sealing tape can lead to oil leakage and malfunction.
- In order to prevent a foreign substance from going into the product during the piping work, it should be carefully cleaned before working.

4) Installation of the Product
- For TND (Threaded Model), be careful not to damage the O-ring, and tighten them with the torque shown in the table below.

<table>
<thead>
<tr>
<th>Model No.</th>
<th>Thread Size</th>
<th>Torque (N·m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>TND0600</td>
<td>M32 x 1.5</td>
<td>50</td>
</tr>
<tr>
<td>TND1000</td>
<td>M38 x 1.5</td>
<td>63</td>
</tr>
<tr>
<td>TND1600</td>
<td>M48 x 1.5</td>
<td>80</td>
</tr>
</tbody>
</table>

- Apply an adequate amount of grease to the O-ring.
- If it is mounted under dry state, the O-ring may have twisting or be defective.
- If it is tightened with higher torque, it may lead to malfunction.

5) Replacement of Attachment
- Do not lose the plunger spring when the attachment (contact bolt) is removed.
- When mounting the attachment, stop the plunger with a spanner at edge and tighten it with torque as shown in the table below.

<table>
<thead>
<tr>
<th>Model No.</th>
<th>Head Thread Size</th>
<th>Torque (N·m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>TND0600</td>
<td>M10 x 1.5</td>
<td>16</td>
</tr>
<tr>
<td>TND1000</td>
<td>M10 x 1.5</td>
<td>16</td>
</tr>
<tr>
<td>TND1600</td>
<td>M12 x 1.75</td>
<td>40</td>
</tr>
</tbody>
</table>

6) Air Bleeding of the Hydraulic Circuit
- If the hydraulic circuit has excessive air, the action time may become very long. If air enters the circuit after connecting the hydraulic port or under the condition of no air in the oil tank, please perform the following steps.

1. Reduce hydraulic pressure to less than 2MPa.
2. Loosen the cap nut of pipe fitting closest to the clamp by one full turn.
3. Wiggle the pipeline to loosen the outlet of pipe fitting. Hydraulic fluid mixed with air comes out.
4. Tighten the cap nut after bleeding.
5. It is more effective to bleed air at the highest point inside the circuit or at the end of the circuit. (Set an air bleeding valve at the highest point inside the circuit.)

7) Checking Looseness and Retightening
- At the beginning of the product installation, the bolt and nut may be tightened lightly. Check the looseness and re-tighten as required.

Hydraulic Fluid List

ISO Viscosity Grade ISO-VG-32

<table>
<thead>
<tr>
<th>Maker</th>
<th>Anti-Wear Hydraulic Oil</th>
<th>Multi-Purpose Hydraulic Oil</th>
</tr>
</thead>
<tbody>
<tr>
<td>Showa Shell Sekiyu</td>
<td>Tellus S2 M 32</td>
<td>Morina S2 B 32</td>
</tr>
<tr>
<td>Idemitsu Kosan</td>
<td>Daphne Hydraulic Fluid 32</td>
<td>Daphne Super Multi Oil 32</td>
</tr>
<tr>
<td>JX Nippon Oil & Energy</td>
<td>Super Hyrando 32</td>
<td>Super Mulpus DX 32</td>
</tr>
<tr>
<td>Cosmo Oil</td>
<td>Cosmo Hydro AW32</td>
<td>Cosmo New Mighty Super 32</td>
</tr>
<tr>
<td>ExxonMobil</td>
<td>Mobil DTE 24</td>
<td>Mobil DTE 24 Light</td>
</tr>
<tr>
<td>Matsumura Oil</td>
<td>Hydol AW-32</td>
<td></td>
</tr>
<tr>
<td>Castrol</td>
<td>Hyspin AWS 32</td>
<td></td>
</tr>
</tbody>
</table>

Note: As it may be difficult to purchase the products as shown in the table from overseas, please contact the respective manufacturer.
Cautions

- Notes on Hydraulic Cylinder Speed Control Unit

Please pay attention to the cautions below. Design the hydraulic circuit for controlling the action speed of hydraulic cylinder. Improper circuit design may lead to malfunctions and damages. Please review the circuit design in advance.

- Flow Control Circuit for Single Acting Cylinder

For spring return single acting cylinders, restricting flow during release can extremely slow down or disrupt release action. The preferred method is to control the flow during the lock action using a valve that has free-flow in the release direction. It is also preferred to provide a flow control valve at each actuator.

Accelerated clamping speed by excessive hydraulic flow to the cylinder may sustain damage. In this case add flow control to regulate flow. (Please add flow control to release flow if the lever weight is put on at the time of release action when using swing clamps.)

![Flow Control at the Release Side](image)

- Flow Control Circuit for Double Acting Cylinder

Flow control circuit for double acting cylinder (except LKE/TLA/TMA/TND) should have meter-out circuits for both the lock and release sides. Meter-in control can have adverse effect by presence of air in the system. However, in the case of controlling LKE, TMA, TLA and TND, both lock side and release side should be meter-in circuit. For TMA, TLA and TND, if meter-out circuit is used, abnormal high pressure is created, which causes oil leakage and damage.

[Meter-out Circuit] (Except LKE/TLA/TMA/TND)

![Meter-out Circuit](image)

[Meter-in Circuit] (LKE/TLA/TMA/TND must be controlled with meter-in.)

![Meter-in Circuit](image)

- In the case of meter-out circuit, the hydraulic circuit should be designed with the following points.

 1. Single acting components should not be used in the same flow control circuit as the double acting components. The release action of the single acting cylinders may become erratic or very slow.

![Flow Control Valve](image)

- Reduce the influence of double acting cylinder control unit. However, due to the back pressure in tank line, single action cylinder is activated after double action cylinder works.

![Sequence Valve](image)

- In the case of meter-out circuit, the inner circuit pressure may increase during the cylinder action because of the fluid supply. The increase of the inner circuit pressure can be prevented by reducing the supplied fluid beforehand via the flow control valve. Especially when using sequence valve or pressure switches for clamping detection, if the back pressure is more than the set pressure then the system will not work as it is designed to.
- **Notes on Handling**

1) It should be handled by qualified personnel.
- The hydraulic machine and air compressor should be handled and maintained by qualified personnel.

2) Do not handle or remove the machine unless the safety protocols are ensured.
 1. The machine and equipment can only be inspected or prepared when it is confirmed that the preventive devices are in place.
 2. Before the product is removed, make sure that the above-mentioned safety measures are in place. Shut off the air of hydraulic source and make sure no pressure exists in the hydraulic and air circuit.
 3. After stopping the product, do not remove until the temperature cools down.
 4. Make sure there is no abnormality in the bolts and respective parts before restarting the machine or equipment.

3) Do not touch a plunger while work support is working. Otherwise, your hands may be injured due to clinching.

4) Do not disassemble or modify.
- If the equipment is taken apart or modified, the warranty will be voided even within the warranty period.

- **Warranty**

1) Warranty Period
- The product warranty period is 18 months from shipment from our factory or 12 months from initial use, whichever is earlier.

2) Warranty Scope
- If the product is damaged or malfunctions during the warranty period due to faulty design, materials or workmanship, we will replace or repair the defective part at our expense.
- Defects or failures caused by the following are not covered.
 1. If the stipulated maintenance and inspection are not carried out.
 2. If the product is used while it is not suitable for use based on the operator's judgment, resulting in defect.
 3. If it is used or handled in inappropriate way by the operator.
 (Including damage caused by the misconduct of the third party.)
 4. If the defect is caused by reasons other than our responsibility.
 5. If repair or modifications are carried out by anyone other than Kosmek, or without our approval and confirmation, it will void warranty.
 6. Other caused by natural disasters or calamities not attributable to our company.
 7. Parts or replacement expenses due to parts consumption and deterioration.
 (Such as rubber, plastic, seal material and some electric components.)

- **Maintenance and Inspection**

1) Removal of the Product and Shut-off of Pressure Source
- Before the machine is removed, make sure that the above-mentioned safety measures are in place. Shut off the air of hydraulic source and make sure no pressure exists in the hydraulic and air circuit.
- Make sure there is no abnormality in the bolts and respective parts before restarting.

2) Regularly clean the area around the piston rod and plunger.
- If it is used when the surface is contaminated with dirt, it may lead to packing seal damage, malfunctioning, fluid leakage and air leaks.

3) If disconnecting by couplers on a regular basis, air bleeding should be carried out daily to avoid air mixed in the circuit.

4) Regularly tighten piping, attachment and work support to ensure proper use.

5) Make sure the hydraulic fluid has not deteriorated.

6) Make sure there is smooth action and no abnormal noise.
- Especially when it is restarted after left unused for a long period, make sure it can be operated correctly.

7) The products should be stored in the cool and dark place without direct sunshine or moisture.

8) Please contact us for overhaul and repair.
A Wide Variety of Kosmek Work Supports

Work support eliminates chattering while machining and prevents deformation by the cutting load.

Application Examples

To avoid chattering during machining of thin-walled sections
To back up the screw fastener machine and a nut-runner
Workpiece with different heights
To avoid the radial chatter on lathe machining

Kosmek Work Clamping Systems Complete Catalog

Please find further information on our complete catalog.
You can order it from our website (http://www.kosmek.co.jp/english/).
Work Support Line-up

<table>
<thead>
<tr>
<th>Classification</th>
<th>Model LD</th>
<th>Model LC</th>
<th>Model TNC</th>
<th>Model TC</th>
<th>Model WNC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operating Pressure Range</td>
<td>Low Pressure Single Acting External Thread 2.5~7MPa</td>
<td>Low Pressure Single Acting Top Flange 2.5~7MPa</td>
<td>High Pressure Single Acting External Thread 7~35MPa</td>
<td>High Pressure Single Acting Top Flange 7~25MPa</td>
<td>Air Pressure Single Acting External Thread 0.25~0.7MPa</td>
</tr>
<tr>
<td>Standard Hydraulic Advance Model</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Air Advance Model</td>
</tr>
<tr>
<td>Hydraulic Advance Short Model</td>
<td></td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>Air Advance Model</td>
</tr>
<tr>
<td>Hydraulic Advance Long Stroke Model</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Air Advance Model</td>
</tr>
<tr>
<td>Spring Advance Model</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Spring Advance Short Model</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Spring Advance Long Stroke Model</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Air Sensing Option</td>
<td></td>
<td></td>
<td></td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Rodless Hollow Model</td>
<td>–</td>
<td></td>
<td>–</td>
<td></td>
<td>–</td>
</tr>
<tr>
<td>Manifold Block</td>
<td>–</td>
<td>LZ-MP</td>
<td>–</td>
<td>LZ-MP</td>
<td>–</td>
</tr>
<tr>
<td>Speed Control Valve Plug</td>
<td>–</td>
<td>BZL, BZX, JZG</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Air Vent</td>
<td>–</td>
<td>XLC-VENT</td>
<td>–</td>
<td>XLC-VENT</td>
<td>–</td>
</tr>
</tbody>
</table>

※ Please contact us for details of ★ part.
FOR FURTHER INFORMATION ON UNLISTED SPECIFICATIONS AND SIZES, PLEASE CALL US.

SPECIFICATIONS IN THIS LEAFLET ARE SUBJECT TO CHANGE WITHOUT NOTICE.

HEAD OFFICE
1-5, 2-Chome, Murotani, Nishi-ku, Kobe 651-2241
TEL. +81-78-991-5162 FAX. +81-78-991-8787

BRANCH OFFICE (U.S.A.)
KOSMEK (U.S.A.) LTD.
650 Springer Drive, Lombard, IL 60148 USA
TEL. +1-630-620-7650 FAX. +1-630-620-9015

MEXICO REPRESENTATIVE OFFICE
KOSMEK USA Mexico Office
 Blvd Juarez la Campana 1040, 8 Colonia Puerto Lujan Queretaro 76230 Mexico
 TEL. +52-442-161-2347

BRANCH OFFICE (EUROPE)
KOSMEK EUROPE GmbH
Schleppenplatz 2 9020 Klagenfurt am Wörthersee Austria
TEL. +43-463-287587 FAX. +43-463-287587-20

BRANCH OFFICE (INDIA)
KOSMEK LTD - INDIA
F 203, Level-2, First Floor, Prestige Center Point, Cunningham Road, Bangalore -560052 India
TEL. +91-9880561695

THAILAND REPRESENTATIVE OFFICE
67 Soi 58, RAMA 9 Rd., Suansuan, Suanluang, Bangkok 10250
TEL. +66-2-300-5132 FAX. +66-2-300-5133