New

Magnetic Clamping Systems

Reduce Mold Change Time
Increase Mold Change Safety Model MAK

New Model
Now on Sale
MIMS Goal: Zero Accidental Falls

Safety is Everything

Mold Clamping Force/ Temperature Monitor

The monitor displays the clamping force with a digital display. It is able to measure magnetic plate surface temperature and calculate the change of clamping forces caused by temperature changes.
Individual Sensors in Every Core

All magnetic cores are equipped with a sensor that measures clamping forces. It is able to measure actual clamping forces even if a mold has through holes.

Mold Contact/ Separation Detection

In case a mold is separated, two proximity switches will immediately output an emergency stop signal. It is able to detect whether a mold is securely locked at the time of installation.

MIMS
Multi Information Monitoring System
(In case of Detection System M)
Case Studies

Magnetic Clamp Series

Magnetic Plate
Kosmek Magnetic Clamping Systems Have Been Installed in Various Molding Machines from 50 ton to 3000 ton
Invisible Magnetic Forces Visually Digitized

Measuring clamping force of the area that a mold contacts the magnetic plate enables accurate display of clamping force.

Every magnetic core has a sensor to confirm overall clamping force.

Since every magnetic core has a sensor, the magnetic clamp is able to confirm actual clamping force of molds in various sizes.
Accurate Reading Regardless of Mold Size

It measures clamping force of the area that the magnetic core and mold are in contact with.

No Need to Input Information

Actual measuring of the mold contact area means there is no need to input information such as mold size, etc beforehand.

Accurate Measuring Regardless of Mold Condition

Able to confirm accurate clamping force, even there are air gaps or through holes for mounting bolt, because it does not measure the area that the mold is not in contact with the plate. It also measures the change in clamping force caused by rust or material of mold mounting plate.

Accurate Display with Digital Number

Clamping Force Indicator displays clamping force digitally.

Magnetic Plate Temperature Check

Built-in temperature sensors allow for monitoring mold temperatures. It calculates by the change in clamping forces.

MIMS for More Safe Operation
High Durability with Metal Surface

The metal surface of Magnetic Plate enables high durability.

The plate surface is constructed with metal only. The metal surface prevents outside interference and does not deteriorate over time as epoxy resin does.

The plate surface is constructed with metal only, preventing contaminants from outside. This enables high rigidity, and Metal Surface does not deteriorate over time as epoxy resin does.

Previous model has magnets embedded from mold mounting surface and epoxy resin molding its perimeter. This causes contaminants to get stuck in epoxy resin and damages internal electrical wiring.

Epoxy Resin Deteriorates

Resin is peeled off by deterioration, causing snapping and short circuit of the electrical wiring.

Exposed electrical wiring inside the epoxy resin.
Waterproof Equal to IPX5

Prevent Infiltration of Contaminants and Fluid

Magnetic Clamp Waterproof Testing

Waterproof Rating equal to IPX5
Conditions
Water Flow Rate:
12.5L/min with a 6.3mm-diameter nozzle
Water Spraying Distance: 2.5 ~ 3m
Testing Time: 3 min at the minimum

The actual testing video is available on our website.

Improved Maintainability

Each magnetic core is replaceable in case of a trouble.

※ Required to remove a magnetic plate from an I.M.M.
Mechanism of Mold "Separation" (Error)

Types of forces applied to a mold during molding operation.

Except gravity, the forces applied to a mold during molding are horizontal. Mold errors caused by horizontal forces lead to mold "separation".

The sequence of the mold error is "Horizontal Separation" ⇒ "Vertical Displacement" (Falling). "Displacement" caused by the force of gravity can be supported by the locating ring or the support block. In case of mold error, it is important to detect mold "separation" instantly in order to stop IMM at once.

Separation Detection with Proximity Switch

In case a mold is separated, "separation detection function" with proximity switch will detect errors.

Equipped with Proximity Switch, which is for separation detection only, it securely outputs an error detection signal when a mold is separated 0.5mm from the magnetic plate.
Mold Contact Check with Proximity Switch

Checking distance with proximity switch, able to detect errors securely when a mold is not in close contact.

Kosmek Magnetic Clamp checks mold seating in real time using proximity switches. This much safer proximity switch system is based on EN standard with strict safety measures observed at all times.

Mold Contact Check with Operation Panel

Conditions of mold detected by proximity switch can be confirmed with operation panel.

Secure Detection using Two Proximity Switches

There are two proximity switches per plate, even when a mold through hole for mounting bolt and a proximity switch are overlapped. It detects a mold when either of them is in contact with the mold.
System Condition at a Glance
Multifunctional Operation Panel

CPI Clamping Process Indicator

Clarify Error Conditions

C.P.I. function shows detailed error conditions, simplifying recovery operations. Now able to check the C.P.I. on the operation panel.

※ In case of Model MUA / MUV / MUW

MIMS Multi Information Monitoring System

Mold Clamping Force • Temperature Display

Able to check the actual clamping force and temperature of a magnetic plate with the operation panel. Push the DISPLAY button to switch the display of mold clamping force and temperature.

※ In case of Model MUA-M / MUV-M / MUW-M

Mold Clamping Force Indicator

Magnetic flux detection coil makes measurement of magnetic flux density, and checks magnetizing condition of magnetic cores. Indicator is displayed with six levels, and alarms when clamping force falls below 75%.

※ In case of Model MUA-F / MUV-F / MUW-F.
Displays Conditions of Mold and IMM

The operation panel indicators will confirm a mold and if mold opening and mold closing are operating properly.

Interlock

Operation Panel communicates with the IMM to prevent operational errors before they happen. The risk of mold dropping due to operational error is excluded.

Superior Performance

Simple operation leads to improved performance.

Superior Protection

Control Unit

Superior Protection

The control unit has an IP (Ingress Protection) rating of IP5X, a level that protects against the entry of dust particles, ensuring proper functionality.

Compliance Friendly

Complied with the standards of each country of operation.

Magnet Burn-Out Protection

If magnets are activated or deactivated more than six times within a one minute period, the operational function shuts down to avoid system burn-out.

※ Functionality returns after a certain time.

Installation Position Flexibility

A molding machine can be located lower since the overall height of the unit has been lowered.
Remote Monitoring System

Remote Diagnosis of Clamping System Condition

Easy Setup, provides machine condition and user information wirelessly. Accurate data transmission enables quick machine recovery.

Quick recovery from a system error improves service accuracy.

An error status during mold clamping can be sent to a smart phone or tablet and the data will be sent to Kosmek via a user’s communication network. This allows prompt and accurate condition information.
Magnetic clamping system information can be sent to PC.
※ Smartphones, tablets, etc. can also be used. Contact us for further information.

Send the information to us. Immediately respond after we check.
Advantages

Much Shorter Mold Change Time

1. With a manual clamping system, workers must loosen and tighten bolts one by one. However, with an automatic clamping system, a single operator can release the clamps holding the mold on both sides at once, reducing changing time.

2. Reduction of mold changing time results in less time the crane spends waiting to put the mold in place, an important factor at plants where multiple molding machines are in operation.

3. When there is an urgent need to make repairs to the mold or the machine, the automatic clamping system can allow the mold to be removed faster, resulting in less down time.

4. Reduction of mold changing time leads to an overall improvement in productivity.

Simplified Mold Loading and Unloading

It is very easy to clamp and unclamp a mold. You just need to press the LOCK or RELEASE buttons. The magnetic clamp series drastically simplifies mold loading/unloading operations. The mold is clamped just by pressing the LOCK button. No need to move to the non-operation side or use a wrench or other tools. Hard work such as tightening bolts is also reduced.

High Quality

Uniform clamping force to the mold mounting surface causes no distortion of the mold. This feature also leads to higher product quality and longer mold life. (To prevent clamp distortion, it is required to machine additional bolt holes near the center of a machine platen.)
No Need to Standardize Width and Thickness of Mold Back-Plate

Mold standardization held back plans for converting to auto-clamping. Magnetic Clamp is available for various mold sizes.

No Interference on the Mold Mounting Surface

Automatic clamps interfere with the mold, so that piping installation are limited. Magnetic Clamp, has no obstacles, allows for flexible layout for piping, reducing time for mold designing.

Energy Saving

Power (Electric power) is used for just a few seconds during magnetizing and demagnetizing operations. No moving components are used. This feature especially reduces the possibility of wear of the internal components, eliminating maintenance inside the magnetic plate.
Stable Clamping Force with a Bi-directional Magnetic Circuit

Permanent magnets are used for Magnetic Clamp. By reversing the polarity of magnet with electric current, clamping force is generated to lock a mold.

Mold Loading/Unloading (Initial De-Magnetizing)

The magnetic force is balanced within the plate and is non-existent on the surface.

Mold Closing (Start Magnetization)

The polarity of the alnico magnet wrapped around the coil is reversed when the electric current is supplied, shifting the magnetic flux. This operation generates magnetic force on the surface of the magnet plate. The magnetic force becomes permanent.

During Molding Production (Magnetized State)

The magnetic flux will be permanently maintained unless an electric current is supplied. During production, power is supplied only to the proximity switch, so there is almost no energy consumption.
Magnetic Clamp in general has

Mono-Directional or Bi-Directional Magnetic Circuit

Mono-Directional Magnetic Circuit
Magnetic circuit is generated on each pole. All magnetic cores are composed of N pole and the magnetic plate is magnetized to S pole.

Bi-Directional Magnetic Circuit
(Magnetic circuit is generated between adjacent poles. Composed of N-pole and S-pole magnetic cores.)

Clamping Force Comparison
- **Mono-Directional Magnetic Circuit**
 Needs space between magnetic cores, which reduces core quantity and leads to low clamping force.

- **Bi-Directional Magnetic Circuit**
 Magnetic cores can be placed close to each other, increasing core quantity, resulting in high clamping force.

Influence of Air Gap
- **Mono-Directional Magnetic Circuit**
 Magnetic circuit is generated by single pole, so the force to emit magnetic flux is small and resistance to air gap is low.

- **Bi-Directional Magnetic Circuit**
 Magnetic flux pulled by different polarities, the force to emit magnetic flux is large and resistance to air gap is high.

Kosmek magnetic clamp is designed with superior bi-directional magnetic circuit method.
Basic Structure of Magnetic Plate

Mold Contact/ Separation Detection
In case a mold is separated from the platen, two proximity switches will immediately output an emergency stop signal. It also ensures the mold is secured after clamping.

Magnetic Cores
Enables powerful and stable clamping force generated by the best combination of Alnico and Neodymium magnets in a bi-directional magnetic circuit.

Individual Sensors in Every Core
All magnetic cores are equipped with a sensor that measures magnetic forces. It is able to measure actual magnetic forces even if the mold has through holes. (In case of Detection System M : MIMS)

Ejector Rod Holes
The plate is made to meet the specifications of the movable platen of the machine.

Locating Ring
The locating ring is custom made and replaceable (Standard model). Adapter Replaceable option is also available for using several locating rings with different diameters. (In case of Option A : Adapter Replaceable)

External dimensions differ depending on the number and the arrangement of magnetic cores. We will prepare an outline drawing based on a machine capacity. Please contact us for further information.
Magnetic Clamping System Selection List

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>~ 500</td>
<td>MAK0050</td>
<td>50</td>
<td>50</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>~ 800</td>
<td>MAK0080</td>
<td>75</td>
<td>62</td>
<td>MUA1711</td>
<td>MUB1711</td>
<td>MES1</td>
</tr>
<tr>
<td>~ 1100</td>
<td>MAK0100</td>
<td>100</td>
<td>100</td>
<td>MUV1711</td>
<td>MUVW1711</td>
<td></td>
</tr>
<tr>
<td>~ 1500</td>
<td>MAK0130</td>
<td>150</td>
<td>125</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>~ 1800</td>
<td>MAK0180</td>
<td>175</td>
<td>175</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>~ 2500</td>
<td>MAK0220</td>
<td>225</td>
<td>200</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>~ 3150</td>
<td>MAK0280</td>
<td>275</td>
<td>250</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>~ 3850</td>
<td>MAK0350</td>
<td>326</td>
<td>300</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>~ 5000</td>
<td>MAK0450</td>
<td>401</td>
<td>401</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>~ 5600</td>
<td>MAK0550</td>
<td>451</td>
<td>426</td>
<td>MUA1711</td>
<td>MUB1711</td>
<td>MES1</td>
</tr>
<tr>
<td>~ 6800</td>
<td>MAK0650</td>
<td>476</td>
<td>451</td>
<td>MUV1711</td>
<td>MUVW1711</td>
<td></td>
</tr>
<tr>
<td>~ 8600</td>
<td>MAK0850</td>
<td>627</td>
<td>551</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>~ 11000</td>
<td>MAK1000</td>
<td>827</td>
<td>752</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>~ 13000</td>
<td>MAK1300</td>
<td>978</td>
<td>953</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes:
1. The above shows standard system references. It varies depending on machine capacity, platen size and others. Please contact us when deciding specifications.
2. The model number of safety chain should be specified according to the mold weight, dimensions and others.
3. Model MAK is also available for higher machine capacity than shown above. Please contact us for further information.
Model No. Indication : Magnetic Plate

MAK 035 0 - H M N 2 - AP - S

1 Magnetic Plate Model

MAK : Standard Model (50mm Thick)
※ Please contact us for a thin-plate model.

2 Machine Capacity Code

※ Please refer to the specifications.

3 Design No.

0 : Revision Number

4 Injection Molding Machine Type

H : Horizontal
W : Two-Color Rotary
V : Vertical Single Acting
R : Vertical Rotary

5 Detection System

F : Magnetic Flux Error Detection
(Mold Clamping Force Indicator, Stationary Side Magnetic Plate Temperature Display ※)
M : MIMS Multi Information Monitoring System
(Mold Clamping Force and Magnetic Plate Temperature Display) (Only for Control Unit/Operation Panel : MUA/MUV/MUV)

※1. In case of Control Unit/Operation Panel MUB : Stationary Side Magnetic Plate Temperature Alarm

6 Operating Temperature

N : Standard 0 – 100°C
H : High Temperature 0 – 150°C

7 The Number of Discharges

1 : 1 Discharge 4 : 4 Discharges 8 : 8 Discharges G : 16 Discharges
2 : 2 Discharges 6 : 6 Discharges C : 12 Discharges
※ 1 The Number of Discharges varies depending on 2 Machine Capacity Code. Contact us for further information.

8 Option

A : Adapter Replaceable
P : Pin Specification
D : Keyhole-shaped Locating Ring
T : With Heat Insulating Plate (Please indicate the thickness of heat insulating plate in 1mm increments in □.)

9 SER. No.

※ It is the serial number of the product specification. We will create a number.
Specifications

<table>
<thead>
<tr>
<th>Model No.</th>
<th>MAK</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clamping Force (per Magnetic Core)</td>
<td>kN</td>
</tr>
<tr>
<td>Magnetic Core Diameter</td>
<td>mm</td>
</tr>
<tr>
<td>Magnetic Core Thickness</td>
<td>mm</td>
</tr>
<tr>
<td>Operating Temp. (Mold Contact Surface)</td>
<td>°C</td>
</tr>
<tr>
<td>Magnetic Flux Height (Penetration Depth to Mold Side)</td>
<td>mm</td>
</tr>
<tr>
<td>Mold Contact Detection Distance</td>
<td>mm</td>
</tr>
<tr>
<td>Mold Separation Distance</td>
<td>mm</td>
</tr>
<tr>
<td>Operating Voltage</td>
<td>(AC) V</td>
</tr>
<tr>
<td>Conduction Time</td>
<td>sec.</td>
</tr>
</tbody>
</table>

Notes:
※2. Changes in these figures may be necessary according to actual mold specifications and other conditions.
※3. Please inform us of the operating voltage in advance. Since the internal structure of a magnetic plate varies with operating voltage, no changes are allowed after launching the manufacture of the plate.
※4. The time of magnetic pole inversion. The full operating time differs depending on the number of magnetic cores and the conduction method to the plate.

Machine Capacity Code

<table>
<thead>
<tr>
<th>Machine Capacity (kN)</th>
<th>Magnetic Plate Model No.</th>
<th>Clamping Force (kN)</th>
<th>No. of Discharges</th>
<th>Weight (kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MOV. Platen</td>
<td>STA. Platen</td>
<td>MOV. Platen</td>
<td>STA. Platen</td>
<td></td>
</tr>
<tr>
<td>~ 500</td>
<td>MAK0050</td>
<td>50</td>
<td>50</td>
<td>1</td>
</tr>
<tr>
<td>~ 800</td>
<td>MAK0080</td>
<td>75</td>
<td>62</td>
<td>1</td>
</tr>
<tr>
<td>~ 1100</td>
<td>MAK0100</td>
<td>100</td>
<td>100</td>
<td>1</td>
</tr>
<tr>
<td>~ 1500</td>
<td>MAK0130</td>
<td>150</td>
<td>125</td>
<td>1</td>
</tr>
<tr>
<td>~ 1800</td>
<td>MAK0180</td>
<td>175</td>
<td>175</td>
<td>1</td>
</tr>
<tr>
<td>~ 2500</td>
<td>MAK0220</td>
<td>225</td>
<td>200</td>
<td>1</td>
</tr>
<tr>
<td>~ 3150</td>
<td>MAK0280</td>
<td>275</td>
<td>250</td>
<td>♦</td>
</tr>
<tr>
<td>~ 3850</td>
<td>MAK0350</td>
<td>326</td>
<td>300</td>
<td>♦</td>
</tr>
<tr>
<td>~ 5000</td>
<td>MAK0450</td>
<td>401</td>
<td>401</td>
<td>♦</td>
</tr>
<tr>
<td>~ 5600</td>
<td>MAK0550</td>
<td>451</td>
<td>426</td>
<td>♦</td>
</tr>
<tr>
<td>~ 6800</td>
<td>MAK0650</td>
<td>476</td>
<td>451</td>
<td>♦</td>
</tr>
<tr>
<td>~ 8600</td>
<td>MAK0850</td>
<td>627</td>
<td>551</td>
<td>♦</td>
</tr>
<tr>
<td>~ 11000</td>
<td>MAK1000</td>
<td>827</td>
<td>752</td>
<td>♦</td>
</tr>
<tr>
<td>~ 13000</td>
<td>MAK1300</td>
<td>978</td>
<td>953</td>
<td>♦</td>
</tr>
</tbody>
</table>

Notes:
1. Please contact us for power consumption (that is required when the clamp is being activated and deactivated).
2. There is almost no power consumption by the magnetic clamp during normal injection molding operation.
3. Please contact us for the number of discharges marked with ♦.
4. Model MAK is also available for higher machine capacity than shown above. Please contact us for further information.
Model No. Indication: Control Unit/Operation Panel

- **MUA 17 21 - V M - - AW**

1 Control Unit Model
- **MUA**: Standard (for Horizontal Single-Acting Molding Machine)
- **MUB**: Compact Model
 - 1 Discharge Only • IMM capacity up to 2500kN
- **MUV**: For Vertical Molding Machine
- **MUW**: For Two-Material Injection Molding Machine

2 The Number of Discharges
- 1: 1 Discharge
- 2: 2 Discharges
- 4: 4 Discharges
- 6: 6 Discharges
- 8: 8 Discharges
- G: 16 Discharges
- C: 12 Discharges

3 Design No.
- 1: Revision Number

4 Injection Molding Machine type and Mold Loading/Unloading Direction
- **MUA**: Standard / **MUB**: Compact Model
- **V**: Horizontal Machine • Vertical Mold Loading
- **H**: Horizontal Machine • Horizontal Mold Loading
- **U**: Vertical Machine • Upper Mold Only
- **B**: Vertical Machine • Upper and Lower Mold
- **R**: Vertical Rotary Machine (Lower Side) • Upper Mold × 1 Lower Mold × 2
 - Lower side Rotary Table Stop Position
 - R1: 1 position / R2: 2 positions / R3: 3 positions / R4: 4 positions
- **MUV**: For Two-Material Injection Molding Machine
- **MUW**: For Two-Material Injection Molding Machine
- **U**: 1-Plate Loading • Control Channel STA. 1 / MOV. 1
- **S**: 2-Mold Simultaneous Loading • Control Channel STA. 2 / MOV. 2
- **D**: 2-Mold Sequential Loading • Control Channel STA. 2 / MOV. 2

5 Detection System
- **F**: Magnetic Flux Error Detection (Mold Clamping Force Indicator, Stationary Side Magnetic Plate Temperature Display[1])
- **M**: MIMS Multi Information Monitoring System (Mold Clamping Force and Magnetic Plate Temperature Display) [M MUA/MUV/MUW Only]

*1. In case of **MUB**: Stationary Side Magnetic Plate Temperature Alarm

6 Indication Language
- **Blank**: Japanese (Control Unit: written in English, Operation Panel: written in Japanese)
- **E**: English (UK) (Control Unit & Operation Panel: written in English, Temperature: °C [Celsius])
- **N**: English (US) (Control Unit & Operation Panel: written in English, Temperature: °F [Fahrenheit])
- **C**: Chinese (Control Unit: written in English, Operation Panel: written in Chinese)

*2. Please contact us for other indication languages.

7 Option
- **Blank**: None (Standard)
- **A**: Correspondence to UL
- **W**: Remote Monitoring System[3]
- **700**: Correspondence to EUROMAP 70.0
- **701**: Correspondence to EUROMAP 70.1

*3. Please contact us for further information.
Specifications

<table>
<thead>
<tr>
<th>Model No.</th>
<th>MUA / MUV / MUW</th>
<th>MUB</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operating Temperature</td>
<td>0 ~ 55°C (Based on JIS-C0025)</td>
<td></td>
</tr>
<tr>
<td>Operating Voltage</td>
<td>Single Phase AC200 ~ 230 V (50 / 60Hz)</td>
<td></td>
</tr>
<tr>
<td>Withstand Voltage</td>
<td>AC1000V (10mA/1 min.)</td>
<td></td>
</tr>
<tr>
<td>Resistant Vibration</td>
<td>1G/10 ~ 150Hz (Based on IEC60068/JIS-C0040)</td>
<td></td>
</tr>
<tr>
<td>Environment Protection Level</td>
<td>IP5X (Based on IEC60529 : 2001)</td>
<td></td>
</tr>
<tr>
<td>Paint Color</td>
<td>Mansel SPB4/4 (Japan Paint Color 75-40H)</td>
<td>Mansel 2.5Y9/1</td>
</tr>
</tbody>
</table>

Notes: 1. For any specifications other than those described in "Model No. Indication" and "Specifications", please contact us. "_Z_" will be added to the end of model number as a sign of a custom-made model.

External Dimensions : Control Unit

MUA1711 / MUV1711 / MUW1711
MUA1721 / MUV1721 / MUW1721

※ The drawing shows MUA/MUV/MUW for 1/2 discharges.

Detail : Control Unit Operation Part

Mold Closing Bypass Switch
Stationary/Movable

Clamp USE/NO-USE Switch
(Inside of the platen)
MUA1741 / MUV1741 / MUW1741

※ The drawing shows MUA/MUV/MUW for 4 discharges.

Detail: Control Unit Operation Part

Mold Closing Bypass Switch
Stationary/Movable

Clamp USE/NO-USE Switch
(Inside of the platen)

MUA1761 / MUV1761 / MUW1761

※ The drawing shows MUA/MUV/MUW for 6 discharges.

Detail: Control Unit Operation Part

Mold Closing Bypass Switch
Stationary/Movable

Clamp USE/NO-USE Switch
(Inside of the platen)
MUA1781 / MUV1781 / MUW1781
※ The drawing shows MUA/MUV/MUW for 8 discharges.

Detail: Control Unit Operation Part

MUA17C1 / MUV17C1 / MUW17C1
※ The drawing shows MUA/MUV/MUW for 12 discharges.
(Composed of 2 sets of MUA/MUV/MUW for 6 discharges.)
MUA17G1 / MUV17G1 / MUW17G1

The drawing shows MUA/MUV/MUW for 16 discharges. (Composed of 2 sets of MUA/MUV/MUW for 8 discharges.)

Detail: Control Unit Operation Part

Mold Closing Bypass Switch
Stationary/Movable

Clamp USE/NO-USE Switch
(Inside of the platen)
MUB1711

※ The drawing shows MUB1711. MUB is for 1 discharge only.

Detail: Control Unit Operation Part

Mold Closing Bypass Switch
Stationary/Movable

Clamp USE/NO-USE Switch
(Inside of the platen)

Power Switch
(Breaker built-in)

140
300
MAX.40

Control Unit Operation Part

Cable Clamp

Note:
1. Refer to P.35 – P.38 for mounting bracket.
Operation Panel : MUA17-1

Detail: Operation Panel

<table>
<thead>
<tr>
<th>No.</th>
<th>Display / Lamp</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>[POWER] Display Lamp</td>
<td>Turns on when the power is ON.</td>
</tr>
<tr>
<td>2</td>
<td>[MOLD CHANGE] Key Switch</td>
<td>Turn this switch ON when changing molds.</td>
</tr>
<tr>
<td>3</td>
<td>[CLAMP ERROR] Display Lamp</td>
<td>Buzzer is activated and the lamp flashes when an error is detected. Error Reset Button</td>
</tr>
<tr>
<td>4</td>
<td>[MMI COND.] Display Lamp</td>
<td>Turns on when the conditions necessary to make a mold change have been met.</td>
</tr>
<tr>
<td>5</td>
<td>[MOLD OPEN OK] Display Lamp</td>
<td>Turns on when it is possible to open the mold.</td>
</tr>
<tr>
<td>6</td>
<td>[MOLD CLOSE OK] Display Lamp</td>
<td>Turns on when it is possible to close the mold.</td>
</tr>
<tr>
<td>7</td>
<td>[MOLD COMPLETE] Display Lamp</td>
<td>Turns on when the machine has closed the mold</td>
</tr>
<tr>
<td>8</td>
<td>[LOCK] Switch Display Lamp</td>
<td>The switch to lock (magnetize) the magnetic clamp. Flashes when the magnetic clamp is locked (magnetized).</td>
</tr>
<tr>
<td>9</td>
<td>[RELEASE] Switch Display Lamp</td>
<td>The switch to release (demagnetize) the magnetic clamp. Flashes when it is locked (magnetized) by special operation.</td>
</tr>
<tr>
<td>10</td>
<td>[STA MOLD DET] Display Lamp</td>
<td>Turns on when a mold is in contact with the magnetic plate on the stationary side. Flashes when separation detection is activated during molding operation.</td>
</tr>
<tr>
<td>11</td>
<td>[NOV MOLD DET] Display Lamp</td>
<td>Turns on when a mold is in contact with the magnetic plate on the movable side. Flashes when separation detection is activated during molding operation.</td>
</tr>
<tr>
<td>12</td>
<td>Mold Clamping Force Indicator</td>
<td>E F Indicates a magnetizing status of magnetic cores in six levels. An alarm is activated when a clamping force is less than 75%.</td>
</tr>
<tr>
<td>13</td>
<td>E M No indicator.</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>COMM. ERROR Display Lamp</td>
<td>Turns on when there is a communication error, or the machine is in protect mode.</td>
</tr>
<tr>
<td>15</td>
<td>[SWITCH DISPLAY] Switch</td>
<td>Switches the display.</td>
</tr>
<tr>
<td>16</td>
<td>[STATIONARY] Display Lamp</td>
<td>Turns on when displaying the stationary side data. (Except error code)</td>
</tr>
<tr>
<td>17</td>
<td>[MOVABLE] Display Lamp</td>
<td>Turns on when displaying the movable side data. (Except error code)</td>
</tr>
<tr>
<td>18</td>
<td>Status Display</td>
<td>E F CPI : System Condition and Error Code Display</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Stationary Platen Side Magnetic Plate Temperature Display</td>
</tr>
<tr>
<td></td>
<td>E M MIMS : Mold Clamping Force Display (Displays the error code when the overall clamping force is less than 25%)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Magnetic Plate Temperature Display</td>
</tr>
</tbody>
</table>

Notes:
1. Please contact us for further information of operation panel for MUV and MUW.
2. The bracket can be mounted on any of top, bottom, left and right.
Operation Panel：MUB1711

Detail: Operation Panel

<table>
<thead>
<tr>
<th>No.</th>
<th>Display / Lamp</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>[MOLD CHANGE]</td>
<td>Key Switch - Turn this switch ON when changing molds.</td>
</tr>
<tr>
<td>2</td>
<td>[CLAMP ERROR]</td>
<td>Display Lamp (RESET) Button - Buzzer is activated and the lamp flashes when an error is detected.</td>
</tr>
<tr>
<td>3</td>
<td>[MAGNET]</td>
<td>Display Lamp - Flashes in case of an error in the magnetic plate.</td>
</tr>
<tr>
<td>4</td>
<td>[MOLD]</td>
<td>Display Lamp - Flashes when the magnetic plate is not generating enough clamping force.</td>
</tr>
<tr>
<td>5</td>
<td>[IMM COND.1]</td>
<td>Display Lamp - Turns on when the conditions necessary to make a mold change have been met.</td>
</tr>
<tr>
<td>6</td>
<td>[MOLD OPEN ON]</td>
<td>Display Lamp - Turns on when it is possible to open the mold.</td>
</tr>
<tr>
<td>7</td>
<td>[MOLD CLOSE ON]</td>
<td>Display Lamp - Turns on when it is possible to close the mold.</td>
</tr>
<tr>
<td>8</td>
<td>[MOLD CLOSE COMPLETE]</td>
<td>Display Lamp - Turns on when the machine has closed the mold.</td>
</tr>
<tr>
<td>9</td>
<td>[LOCK]</td>
<td>Switch Display Lamp - The switch to lock (magnetize) the magnetic clamp.</td>
</tr>
<tr>
<td>10</td>
<td>[RELEASE]</td>
<td>Switch Display Lamp - The switch to release (demagnetize) the magnetic clamp.</td>
</tr>
<tr>
<td>11</td>
<td>[STA. MOLD DET.]</td>
<td>Display Lamp - Turns on when a mold is in contact with the magnet plate on the stationary side.</td>
</tr>
<tr>
<td>12</td>
<td>[MOV MOLD DET.]</td>
<td>Display Lamp - Turns on when a mold is in contact with the magnet plate on the movable side.</td>
</tr>
<tr>
<td>13</td>
<td>[CLAMPING FORCE]</td>
<td>Display Lamp - Indicates a magnetizing status of magnetic cores. An alarm is activated when a clamping force is less than 75%.</td>
</tr>
<tr>
<td>16</td>
<td>IMM COND. 1: Mold Change Mode</td>
<td>Internal Memory Error - Turns on when the IMM condition 1 signal from IMM is ON.</td>
</tr>
<tr>
<td>17</td>
<td>IMM COND. 2: EJ Back Internal Memory Error</td>
<td>Turns on when the IMM condition 2 signal from IMM is ON.</td>
</tr>
<tr>
<td>18</td>
<td>IMM COND. 3: Safety Door Closed Internal Memory Error</td>
<td>Turns on when the IMM condition 3 signal from IMM is ON.</td>
</tr>
<tr>
<td>19</td>
<td>Temperature Error</td>
<td>Displays the plate temperature reaches the operating temperature limit.</td>
</tr>
<tr>
<td>20</td>
<td>Leakage Current Error</td>
<td>Displays the plate temperature reaches the operating temperature limit.</td>
</tr>
</tbody>
</table>

External Dimensions:

2-φ7 2-M6×1 1×12 Cross-Recessed Head Machine Screw (Included)
16-φ5 2-M4×0.7×12 Binding Head Screw (Included) (for Mounting Bracket)
<table>
<thead>
<tr>
<th>Procedure</th>
<th>IMM / Magnetic Plate</th>
<th>Operation Panel</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Suspend the mold by crane. → Close the safety door.</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Prepare for mold change mode. → Move the nozzle / ejector back.</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Turn the [MOLD CHANGE] switch ON.</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Close the mold.</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Press the movable side [RELEASE] button.</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Movable side mold release complete</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Press the stationary side [RELEASE] button.</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Stationary side mold release complete</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Open the platens → Open the safety door → Unload the mold</td>
<td></td>
</tr>
</tbody>
</table>

Operating Procedure : Unloading a Mold ※ It shows operating procedure of MUA. Please contact us for MUB/MUV/MUW.

Note :
- The stationary side and movable side cannot be operated simultaneously. Make sure to operate them sequentially. Push each button for more than 1 second to avoid misoperation.
Operating Procedure : Loading a Mold

<table>
<thead>
<tr>
<th>Procedure</th>
<th>IMM / Magnetic Plate</th>
<th>Operation Panel</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Set the mold.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>→ Close the safety door.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Procedure</th>
<th>IMM / Magnetic Plate</th>
<th>Operation Panel</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Close the mold.</td>
<td></td>
</tr>
</tbody>
</table>

Movable / Stationary [MOLD DETECT] lamp turns ON.
The [MOLD CLOSE COMPLETED] lamp turns ON.
Press the movable side [LOCK] button.

<table>
<thead>
<tr>
<th>Procedure</th>
<th>IMM / Magnetic Plate</th>
<th>Operation Panel</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td></td>
<td>Note :</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• The stationary side and movable side cannot be operated simultaneously. Make sure to operate them sequentially. Push each button for more than 1 second to avoid misoperation.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Procedure</th>
<th>IMM / Magnetic Plate</th>
<th>Operation Panel</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>Movable side lock complete.</td>
<td></td>
</tr>
</tbody>
</table>

The [MOLD OPEN OK] lamp turns OFF.
Movable [LOCK] lamp turns ON.
Press the stationary side [LOCK] button.

<table>
<thead>
<tr>
<th>Procedure</th>
<th>IMM / Magnetic Plate</th>
<th>Operation Panel</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td></td>
<td>Note :</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• The stationary side and movable side cannot be operated simultaneously. Make sure to operate them sequentially. Push each button for more than 1 second to avoid misoperation.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Procedure</th>
<th>IMM / Magnetic Plate</th>
<th>Operation Panel</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Stationary side lock complete.</td>
<td></td>
</tr>
</tbody>
</table>

The [MOLD OPEN OK] lamp turns ON.
Stationary [LOCK] lamp turns ON.

<table>
<thead>
<tr>
<th>Procedure</th>
<th>IMM / Magnetic Plate</th>
<th>Operation Panel</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td></td>
<td>Turn the [MOLD CHANGE] switch OFF.</td>
</tr>
</tbody>
</table>

Notes :
1. For your safety, make sure to check surrounding condition before starting operation.
2. In case of using a crane for mold loading/unloading, make sure that a mold is securely suspended.
3. Make sure that molds meet the specifications of clamps and machines.
4. DO NOT modify or remodel clamps, control panels, other devices, interlock wiring, etc.
5. Even when using them continuously, make sure to check operations and interlocks of each device regularly.
6. If you find anything abnormal, stop operating and contact us immediately.
Detail: Clamping Process Indicator (CPI)

<table>
<thead>
<tr>
<th>Category</th>
<th>Display</th>
<th>Description</th>
<th>Causes + Measures</th>
</tr>
</thead>
<tbody>
<tr>
<td>Load</td>
<td>U</td>
<td>1-8 (STA) Current value during operation is above the upper limit.</td>
<td>Turn the power on again. There can be insulation reduction, deterioration, or short circuit of coils in the plate and an error between the control panel and plate wiring.</td>
</tr>
<tr>
<td></td>
<td>L</td>
<td>1-8 (MOL) Current value during operation is above the upper limit.</td>
<td>Also, there might be power voltage fluctuation. Check the power voltage.</td>
</tr>
<tr>
<td></td>
<td>E</td>
<td>1 Leak current of drive circuit in the control panel.</td>
<td></td>
</tr>
<tr>
<td>Mold</td>
<td>F</td>
<td>01-16 (STA) Mold error detection value is below the set value.</td>
<td>Release the mold on the side the error is occurring.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>21-36 (MOL) Mold error detection value is below the set value.</td>
<td>Check if there is a gap or rust on the mold back side near the error detected part.</td>
</tr>
<tr>
<td>Temp.</td>
<td>t</td>
<td>1-5 (STA) Temperature is above the upper limit of plate temperature.</td>
<td>Plate temperature is too high.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6-9.0 (MOL) Temperature is above the upper limit of plate temperature.</td>
<td>Cool down the plate temperature.</td>
</tr>
<tr>
<td>Sensor</td>
<td>E</td>
<td>1 (STA) Proximity detection is OFF.</td>
<td>Release the mold on the error side, and recover the seating. Make sure there is no gap or rust on the mold back side near the proximity detection.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2 (MOL) Proximity detection is OFF.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3 (STA) Proximity detection turns OFF and then ON again.</td>
<td>Mold separation detection is activated.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4 (MOL) Proximity detection turns OFF and then ON again.</td>
<td>Make sure it is within the specification range, and there is no abnormality in wiring.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5 Both the locating pin insert limit and removal limit are ON.</td>
<td>Make sure the locating pin part has nothing detected by mistake, and there is no abnormality in wiring.</td>
</tr>
<tr>
<td>Clamping Force</td>
<td>E</td>
<td>1 (STA) Clamping force is lower than the minimal required value.</td>
<td>Make sure clamping force is more than the prescribed value.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2 (MOL) Clamping force is lower than the minimal required value.</td>
<td>(25% of plate clamping capacity), and there is no abnormality in clamping force detection coil or wiring.</td>
</tr>
<tr>
<td>Molding</td>
<td>E</td>
<td>1 RFID COND OK + MOLD CHANGE OFF + RELEASE COND OK</td>
<td>It is in the released state during "Mold Change OFF". Conduct locking operation to recover.</td>
</tr>
<tr>
<td>Clamp Control</td>
<td>E</td>
<td>1 (STA) Connection between the control panel and plate is cut off.</td>
<td>Make sure there is no abnormality in connection between the control panel and plate.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2 (MOL) Connection between the control panel and plate is cut off.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3 Clamp Control Panel switch is at ND-USE.</td>
<td>Switch it to "USE".</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4 Exceeding a specified number of clamping operations within a prescribed time.</td>
<td>Auto reset after 180 sec. Plate coils receive a large load, so the number of operation cycles within a prescribed time is limited.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5 Connection in the control panel is cut off.</td>
<td>Make sure there is no abnormality in base plate connecting part in the control panel.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6 Memory in the control panel is broken.</td>
<td>Turn the power on again. Control base plate may be damaged if the power will not recover.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>7 (STA) Operation uncompleted since power is turned OFF during operation (locking/releasing).</td>
<td>Release after turning the power on.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>8 (MOL) Operation uncompleted since power is turned OFF during operation (locking/releasing).</td>
<td>Release after turning the power on.</td>
</tr>
<tr>
<td>Output</td>
<td>E</td>
<td>1 (STA) Electric current when locking is above the prescribed value.</td>
<td>Turn the power on again. There can be insulation reduction, deterioration, or short circuit of coils in the plate and an error between the control panel and plate wiring.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2 (MOL) Electric current when locking is above the prescribed value.</td>
<td>Also, there might be power voltage fluctuation. Check the power voltage.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3 (STA) Electric current when releasing is above the prescribed value.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>4 (MOL) Electric current when releasing is above the prescribed value.</td>
<td></td>
</tr>
</tbody>
</table>
Interlock (Interface)

The interlock functions between devices listed below are incorporated in the magnetic clamping system control circuit, ensuring safe mold changing.
※The interlock functions may not be operational depending on the machine conditions.

IMM ⇒ Magnetic Clamping Systems

<table>
<thead>
<tr>
<th>Signal Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mold Change Mode</td>
<td>A signal that indicates the molding machine is in low-speed mold change mode. The platens move slowly.</td>
</tr>
<tr>
<td>Mold Closed (Mold Touch)</td>
<td>A signal that ensures the mold is completely closed. Prohibits release (demagnetizing) operation when mold is open to prevent it from falling out.</td>
</tr>
<tr>
<td>Nozzle Back</td>
<td>A signal that ensures the nozzle / injection unit is fully back to prevent damage to the nozzle / injection unit when changing molds.</td>
</tr>
<tr>
<td>Ejectors Back</td>
<td>A signal that ensures the ejector plate is in the back position to prevent damage to the ejector rods during mold removal.</td>
</tr>
</tbody>
</table>

Magnetic Clamping Systems ⇒ IMM

<table>
<thead>
<tr>
<th>Signal Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mold Open OK</td>
<td>A signal that indicates the clamping system is ready for mold opening.</td>
</tr>
<tr>
<td>Mold Close OK</td>
<td>A signal that indicates the clamping system is ready for mold closing.</td>
</tr>
<tr>
<td>Mold Change “ON”</td>
<td>A signal that indicates the clamp system is in “Mold Change Mode” .</td>
</tr>
<tr>
<td>Clamp Error ※1</td>
<td>When an error in the clamp circuit occurs, this signal is sent to make an emergency stop of the machine.</td>
</tr>
</tbody>
</table>

Note:
※1. For clamping errors, please refer to the Instruction Manual or contact us.
© Model No. Indication : Mounting Bracket (for Control Unit only)

MEF 001 1

1 Mounting Method

<table>
<thead>
<tr>
<th>For Control Unit MUA/MUV/MUW</th>
<th>For Control Unit MUB</th>
</tr>
</thead>
<tbody>
<tr>
<td>001 : Floor Mounted 1</td>
<td>011 : Floor Mounted</td>
</tr>
<tr>
<td>002 : Wall / Machine Frame Mounted 1</td>
<td>013 : Wall / Machine Frame Mounted</td>
</tr>
<tr>
<td>003 : Wall / Machine Frame Mounted 2</td>
<td></td>
</tr>
<tr>
<td>004 : Hanging</td>
<td></td>
</tr>
<tr>
<td>006 : Floor Mounted 2</td>
<td></td>
</tr>
</tbody>
</table>

※ Please contact us for unlisted mounting methods.

2 Design No. (Revision Number)

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>In case of M 002/003/004/006/011/013</td>
</tr>
<tr>
<td>1</td>
<td>In case of M 001</td>
</tr>
</tbody>
</table>

![Magnetic Clamping Systems Mounting Bracket (for Control Unit only) model MEF](image)

35
External Dimensions

MEF0011 : Floor Mounted 1 (For Control Unit MUA/MUV/MUW)

- The drawing shows MUA/MUV/MUW for 1/2 discharges.

MEF0020 : Wall/Machine Frame Mounted 1 (For Control Unit MUA/MUV/MUW)

- The drawing shows MUA/MUV/MUW for 1/2 discharges.

MEF0030 : Wall/Machine Frame Mounted 2 (For Control Unit MUA/MUV/MUW)

- The drawing shows MUA/MUV/MUW for 1/2 discharges.
External Dimensions

MEF0040 : Hanging (For Control Unit MUA/MUV/MUW)

The drawing shows MUA/MUV/MUW for 1/2 discharges.

MEF0060 : Floor Mounted 2 (For Control Unit MUA/MUV/MUW)

The drawing shows MUA/MUV/MUW for 8 discharges.
MEF0110 : Floor Mounted (For Control Unit MUB)

- Control Unit
- 8-M8×1.25×20 Bolt (Included)
- JIS Spring Washer / Plain Washer
- 2-Bracket Plate (Included)

MEF0130 : Wall/Machine Frame Mounted (For Control Unit MUB)

- Control Unit
- 8-M8×1.25×20 Bolt (Included)
- JIS Spring Washer / Plain Washer
- 2-Bracket Plate (Included)
Model No. Indication: Safety Chain

MES 100 1 - BC - 05 - 00

1 Chain Diameter
- Please refer to the specifications and external dimensions.

2 Design No.
- **1**: Revision Number

3 Mounting Method
- **BC**: Chain (Number of Blocks Installed: 2)
- **BF**: Sling Hook (Number of Blocks Installed: 1)
- The number of blocks installed represents quantity required for one set of Safety Chain.

![BC: Chain](image1)

![BF: Sling Hook](image2)

4 Chain Length
- **08**: 800mm
- **15**: 1500mm
- The above shows examples for representing chain length.
- Chain can be set to any length in 100 mm increments.
- Chain length may not be precise depending on the number of chains used.
- Enough chain length should be allowed to facilitate mounting.

5 Spacer Height
- **00**: No Spacer
- **05**: 50mm
- **10**: 100mm
- Spacer height is adjustable in 50mm increments up to 100mm at maximum. Contact us for spacer height over 100mm. Spacer is used in case the surface of magnetic plate is lower (smaller) than the platen surface.
- Contact us for details of shapes.

Specifications

<table>
<thead>
<tr>
<th>Model No.</th>
<th>MES0501</th>
<th>MES0601</th>
<th>MES0801</th>
<th>MES1001</th>
<th>MES1301</th>
<th>MES1601</th>
<th>MES2001</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chain Operating Load (Static Load) per Chain</td>
<td>ton</td>
<td>0.50</td>
<td>1.10</td>
<td>2.00</td>
<td>3.20</td>
<td>5.20</td>
<td>8.00</td>
</tr>
<tr>
<td>Weight of Chain</td>
<td>kg/m</td>
<td>0.55</td>
<td>0.83</td>
<td>1.30</td>
<td>2.11</td>
<td>3.27</td>
<td>5.34</td>
</tr>
<tr>
<td>Weight of Sling Hook</td>
<td>kg</td>
<td>0.2</td>
<td>0.5</td>
<td>0.9</td>
<td>1.7</td>
<td>3.4</td>
<td>6.9</td>
</tr>
</tbody>
</table>

Notes:
- **1**: It shows the weight of the sling hook part of BF: Sling Hook mounting method.
- Select a safety chain based on the weight of mold on the movable side platen or stationary platen side, whichever is heavier.
Mounting Examples

<table>
<thead>
<tr>
<th>Mounting Method</th>
<th>BC: Chain</th>
<th>BF: Sling Hook</th>
</tr>
</thead>
<tbody>
<tr>
<td>In case of one eyebolt on one side of a mold</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Mounting Method</th>
<th>BC: Chain</th>
<th>BF: Sling Hook</th>
</tr>
</thead>
<tbody>
<tr>
<td>In case of two eyebolts on one side of a mold</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes:
1. When using BF: Sling Hook with two eyebolts on one side, two sets of safety chain are required.
2. The drawings show different mounting methods on the movable and stationary platen sides to show examples for mounting methods. No need to install the system using different mounting methods as shown in these drawings.
3. For block mounting positions on the stationary mold platen side, consideration should be given to an extractor.

External Dimensions

* The drawing below shows in case of **Spacer Height : 00 (No Spacer).**

<table>
<thead>
<tr>
<th>Model No.</th>
<th>MES0501</th>
<th>MES0601</th>
<th>MES0801</th>
<th>MES1001</th>
<th>MES1301</th>
<th>MES1601</th>
<th>MES2001</th>
</tr>
</thead>
<tbody>
<tr>
<td>Block Dimensions</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AA</td>
<td>17</td>
<td>21</td>
<td>28</td>
<td>35</td>
<td>43.5</td>
<td>59.2</td>
<td>74</td>
</tr>
<tr>
<td>AB</td>
<td>5.35</td>
<td>6</td>
<td>8</td>
<td>10</td>
<td>13</td>
<td>16</td>
<td>20</td>
</tr>
<tr>
<td>AC</td>
<td>15</td>
<td>17.6</td>
<td>24</td>
<td>30</td>
<td>39</td>
<td>48</td>
<td>60</td>
</tr>
<tr>
<td>AD</td>
<td>25</td>
<td>30</td>
<td>40</td>
<td>50</td>
<td>65</td>
<td>80</td>
<td>100</td>
</tr>
<tr>
<td>Chain Dimensions</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AA</td>
<td>17</td>
<td>21</td>
<td>28</td>
<td>35</td>
<td>43.5</td>
<td>59.2</td>
<td>74</td>
</tr>
<tr>
<td>AB</td>
<td>5.35</td>
<td>6</td>
<td>8</td>
<td>10</td>
<td>13</td>
<td>16</td>
<td>20</td>
</tr>
<tr>
<td>AC</td>
<td>15</td>
<td>17.6</td>
<td>24</td>
<td>30</td>
<td>39</td>
<td>48</td>
<td>60</td>
</tr>
<tr>
<td>AD</td>
<td>25</td>
<td>30</td>
<td>40</td>
<td>50</td>
<td>65</td>
<td>80</td>
<td>100</td>
</tr>
<tr>
<td>Chain Margin</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AE</td>
<td>200 or more</td>
<td>300 or more</td>
</tr>
<tr>
<td>Eyebolt Size for Mold Side</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Min.BA</td>
<td>M8 × 1.25</td>
<td>M10 × 1.5</td>
<td>M12 × 1.75</td>
<td>M20 × 2.5</td>
<td>M24 × 3</td>
<td>M30 × 3.5</td>
<td>M36 × 4</td>
</tr>
<tr>
<td>Min.BB</td>
<td>M10 × 1.5</td>
<td>M16 × 2</td>
<td>M20 × 2.5</td>
<td>M24 × 3</td>
<td>M30 × 3.5</td>
<td>M36 × 4</td>
<td>M48 × 5</td>
</tr>
<tr>
<td>Max.BB</td>
<td>M24 × 3</td>
<td>M33 × 3.5</td>
<td>M33 × 3.5</td>
<td>M45 × 4.5</td>
<td>M52 × 5</td>
<td>M64 × 6</td>
<td>M80 × 6</td>
</tr>
</tbody>
</table>

Notes:
*3. For spacer options, mounting bolts are provided in consideration of the spacer height.
*4. The eyebolt size indicates the effective range of chain or hook dimensions, not compatibility in terms of strength.
Cautions

Notes for Design

1) Check Specifications
 • Please use each product according to the specifications.
 • Operating temperature of a magnetic plate (a mold contact surface): 0 ~ 100°C (Standard), 0 ~ 150°C (High Temperature).
 Do not use the product when a contact surface temperature of a mold back-plate and a magnetic plate is above the upper limit.

2) When Not Using Clamps
 When not using clamping systems, switch the CLAMP CONT. switch to <NO-USE> equipped inside the body. IMM interlock will be released. Switching to <USE> will activate interlock. Regardless of the clamp conditions at maintenance, switch to <NO-USE> before operating a molding machine.

 In order to avoid misoperation, this switch cannot be switched unless the nob is pulled up.

3) Output state relationship at power OFF and clamp in use/ not in use.
 Regardless of the switch position, clamp normal output is OFF when the power is OFF as shown in the following.

<table>
<thead>
<tr>
<th>Clamp Switch</th>
<th>Control Limit</th>
<th>Mold Open OK Output</th>
<th>Mold Close OK Output</th>
<th>Clamp Normal Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>USE</td>
<td>Power ON</td>
<td>Control</td>
<td>Control</td>
<td>Control</td>
</tr>
<tr>
<td></td>
<td>Power Loss</td>
<td>OFF</td>
<td>OFF</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Power OFF</td>
<td>OFF</td>
<td>OFF</td>
<td></td>
</tr>
<tr>
<td>NO-USE</td>
<td>Power ON</td>
<td>ON</td>
<td>ON</td>
<td>ON</td>
</tr>
<tr>
<td></td>
<td>Power Loss</td>
<td>ON</td>
<td>(Standard Spec.)</td>
<td>OFF</td>
</tr>
<tr>
<td></td>
<td>Power OFF</td>
<td>OFF</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

4) Clamping Force (Magnetic Force)
 Thickness of a mold back-plate should be 20mm or more.
 Distance of the magnetic flux line protrudes is approximately 20mm, so if a mold back-plate is thinner than 20mm, clamping force might be decreased. Rust, liquid or oil adhered on a mold back-plate will cause a decrease in clamping force. Those will not directly decrease clamping force, but cause dust and contaminants stick to the surface leading to make a gap between a magnetic plate and a mold back-plate.

5) Rated Clamping Force Calculation Method
 ♦ Clamping force of the magnetic clamp (Clamping Capacity) is based on the contact area (number of magnet cores) between the mold back-plate and the magnetic plate.
 If a mold back-plate does not contact all of the magnetic cores, calculate the rated clamping force referring to the following calculation example.

 Calculation Example
 In case of the magnetic plate shown above.
 - Magnetic Core: ø 70mm / 16 cores
 - Total Clamping Force: 100.32kN (6.27kN per Core)

 ① Count the number of magnetic cores contacting the entire surface of the mold back-plate.
 - Contact Entirely × 4 cores
 - Approx. 50% Contact × 8 cores
 - Approx. 25% Contact × 4 cores

 ② Total number of magnetic cores contacting the mold back-plate.
 Total Number = 4 pcs + 8 pcs × 0.5 + 4 pcs × 0.25 = 9 cores

 ③ Multiply the clamping force of each magnetic core (6.27kN / core) by the total number of cores.
 Rated Clamping Force = 6.27kN / core × 9 cores = 56.43kN

 ※1 The above calculation is for when a mold is clamped in ideal conditions.
 We recommend reducing the theoretical calculated value by 20% and adjusting a mold opening force of a machine before use.
 1. If there are holes or notches on a rear surface of a mold back-plate, subtract the area from the contact area (number of magnetic cores) with the mold back-plate.
 2. Actual clamping force may be reduced due to the conditions of a mold back-plate.
6) Factors regarding Clamping Force Reduction

- Influence of the Material of Mold Back-Plate
 Actual clamping force may decrease below the rated clamping force due to the material of the mold back-plate.

<table>
<thead>
<tr>
<th>Material</th>
<th>Clamping Force (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS400</td>
<td>100% (Standard)</td>
</tr>
<tr>
<td>S55C / S45C</td>
<td>90 ~ 100%</td>
</tr>
<tr>
<td>SCM440 / SNCM240</td>
<td>78 ~ 93%</td>
</tr>
<tr>
<td>SUJ2 / SUJ405</td>
<td>75 ~ 90%</td>
</tr>
<tr>
<td>FC250</td>
<td>54 ~ 64%</td>
</tr>
</tbody>
</table>

In case material of a mold back-plate is S55C/S45C/SUJ or others, it may be difficult to release the mold when the clamp is turned OFF due to residual magnetism. Clamping force decreases with an increasing gap between a mold back-plate and a magnetic plate.

- Influence of Roughness of Mold Back-Plate
 Roughness of a mold back-plate may decrease a clamping force. Make sure to check the roughness of a mold back-plate.

<table>
<thead>
<tr>
<th>Roughness</th>
<th>Clamping Force</th>
</tr>
</thead>
<tbody>
<tr>
<td>▲▲▲ (Rz1.6 ~ 3.8)</td>
<td>100%</td>
</tr>
<tr>
<td>▲▲ (Rz7.5 ~ 15.5)</td>
<td>about 100%</td>
</tr>
<tr>
<td>▲ (Rz85 ~ 150)</td>
<td>about 90%</td>
</tr>
</tbody>
</table>

- Influence of Temperature
 Clamping force decreases according to mold temperature. In case surface temperature of a magnetic plate exceeds the withstanding temperature, cool it down to room temperature. After that, release the magnetic clamp, and lock it again.
 * Make sure to suspend a mold with a crane before demagnetization.

7) Confirmation Items in regards to Molding Machine

1) Errors of ejector force setting will cause an accidental mold drop.

2) When an ejector force (ejection force and speed) exceeds a clamping force, a mold will be pushed off and dropped by ejector pins.

<table>
<thead>
<tr>
<th>Setting Target</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ejection Force</td>
</tr>
<tr>
<td>Speed</td>
</tr>
</tbody>
</table>

3) Make sure to check the proper length of ejector pin and hole alignment.

4) Suspend a mold with a crane when removing and inserting ejector pins.

5) Mold will drop when a mold opening force exceeds a clamping force.

6) Ensure that a mold opening force does not exceed a clamping force. It is recommended to prepare measures to prevent a mold fall in the event of an abnormal mold opening force and other accidents.

7) Using an overweight mold exceeding a clamping force will cause a mold fall.

8) Clamping force should be twice the nozzle touch force.

6) For details of other cautions, confirmation and adjusting method, please read through the instruction manual and attention labels to ensure safe operation.
Covenants

Installation Notes

1) Do not touch the button or key switches with wet hands. This may result in electrocution.

2) As the magnetic plate generates a strong magnetic field, ensure that people with heart pacemakers do not approach this device. If the pacemaker malfunctions due to the effect of the magnetic field, this may be dangerous for the body.

3) Do not approach the contact surface with magnetic items, i.e. iron, while the equipment is locked. As the strength of the magnet is extremely strong, magnetic objects will attach to the clamp surface. Injuries may result from fingers or hands getting caught between objects and the plate.

4) When the mold is open, do not place any body parts, i.e. hands and feet, etc., in the machine.

5) As the magnetic field lines rise above the front surface (mold side) of the magnetic plate by about 20mm, do not approach the magnetic plate with items easily affected by magnetic fields, i.e. cell phones, magnetic cards, compact disks and others, to avoid malfunction or damage of the items.

6) Even when the clamp is turned OFF (demagnetized), caution is required as a small residual amount of magnetism is still generated.

7) Do not use a mold with a warped or deformed mold back-plate. Clamping force decreases with a gap between a magnetic plate and a mold back-plate.

8) Ensure that contact surface of a magnet plate and a mold back-plate is always clean. Although water and oil on the contact surface do not directly cause clamping force to decrease, dust and contaminants adhered to these liquids may cause a gap between a magnet plate and a mold back-plate.

9) Clamping force changes according to the contact area between a mold back-plate and a magnetic plate. In addition, clamping force may decrease according to conditions of a mold back-plate. Make sure to perform initial testing for each mold and confirm the conditions are appropriate.

10) When using ejector pins, make sure to check the proper pin length and hole alignment. A mold may be pushed off and dropped by the ejector pin.

11) Temperature of contact surface of a mold back-plate and a magnetic plate should be within 0 – 100 °C for standard model, or 0 – 150 °C for high-temperature option.

12) Always visually confirm safe mold handling when using the push button or key switches of the control panel to avoid operating errors.

13) When disconnecting power to the molding machine, also disconnect power to this product.

14) This product does not operate properly with an unstable power supply. Errors may occur when the power supply is momentarily interrupted or during lightning strikes. Do not operate the product when abnormal power fluctuations are anticipated, i.e. lightning strikes.

15) Remove the key switch of the control panel and store in a safe location except when switching molds.

16) Do not operate the product when the voltage exceeds the range of the primary power source. (±10%)

17) Ensure that the control panel and power unit remains free from water or oil. In case water or oil is spilled onto this equipment, stop all operations.

18) Precautions for Use of Mold Safety Chain

① The chain operating load represents static load. Do not reuse the chain if any impact load is applied to it.

② Use the chain with minimum chain slack. This can minimize chain shift length even in the worst case.

③ For eyebolt used on the mold side, take into account the mounting position.

Take into account a balance in the horizontal direction.

- Eyebolt mounted NOT in the center of gravity: Large mold sway.
- Two eyebolts mounted: Minimal mold sway.

Take into account a balance in the front-back direction.

- Eyebolt mounted too far from the mold mounting surface.
- Eyebolt mounted close to the mold mounting surface.
Maintenance and Inspection

1) Disconnect the power to the molding machine and the magnetic clamp before starting maintenance.

2) Do not operate the product with wet hands.

3) As the magnetic plate generates a strong magnetic field, ensure that people with heart pacemakers or other devices do not approach this device.

4) Do not approach the contact surface with magnetic items, i.e., iron while the product is locked. As the strength of the magnet is extremely strong, magnetic objects will attach to the clamping surface. Injuries may result from fingers or hands getting caught between objects and the plate.

5) This product should only be operated by personnel authorized by the Safety Management Manager.

6) Ensure that a third party does not mistakenly operate the product during maintenance and inspection.

7) Always visually confirm safe mold handling when using the push button or key switches of the control panel to avoid operating errors.

8) Always display appropriate signs or placards during maintenance and inspection of the product.

9) Confirm the following points before turning the power ON after conducting maintenance and inspection.
 ① All tools and jigs used for maintenance and inspection have been removed.
 ② Removed covers and cables have been returned to their original locations.

10) Ensure that the control panel and power unit remains free from water or oil. In the event that water or oil is spilled onto the machinery, stop all operations.

11) As the magnetic field lines extend from the front surface (mold side) of magnetic plate by about 20mm, do not approach the magnetic plate with items easily affected by magnetic fields such as cell phones, magnetic cards, compact disks and others to avoid malfunction or damage to the items.

12) The control unit and the magnetic plate have high voltage terminals. They are extremely dangerous. Do not touch the terminals unless performing authorized maintenance. Touching these terminals may lead to accidental death by electrocution.

13) If the product is taken apart or modified the warranty will be void, even within the warranty period.

Warranty

1) Warranty Period
 The product warranty period is 18 months from shipment from our factory or 12 months from initial use, whichever is earlier.

2) Warranty Scope
 If the product is damaged or malfunctions during the warranty period due to faulty design, materials or workmanship, we will replace or repair the defective part at our expense. Defects or failures caused by the following are not covered.

 ① If the stipulated maintenance and inspection are not carried out.
 ② If the product is used while it is not suitable for use based on the operator’s judgment, resulting in defect.
 ③ If it is used or handled in inappropriate way by the operator. (Including damage caused by the misconduct of the third party.)
 ④ If the defect is caused by reasons other than our responsibility.
 ⑤ If repair or modifications are carried out by anyone other than Kosmek, or without our approval and confirmation, it will void warranty.
 ⑥ Other caused by natural disasters or calamities not attributable to our company.

 ⑦ Parts or replacement expenses due to parts consumption and deterioration. (Such as rubber, plastic, seal material and some electric components.)

 Damages excluding from direct result of a product defect shall be excluded from the warranty.
KOSMEK Magnetic Clamp Series

New Model

MIMS Option Available
Multi Information Monitoring System

Model MAK
The only system that enables accurate display of clamping force at hand.

Current Model

Thin-Plate Model
Operating Temperature up to 120°C

Model MEK
Plate Thickness 46 mm

Model MEG
Plate Thickness 37 mm

※ Please refer to this catalog.

※ Please contact us for further information.

KOSMEK LTD.
HEAD OFFICE 1-5, 2-chome, Murotani, Nishi-ku, Kobe-city, Hyogo, Japan 651-2241
TEL.+81-78-991-5162 FAX.+81-78-991-8787

http://www.kosmek.com/

For further information on unlisted specifications and sizes, please call us. Specifications in this leaflet are subject to change without notice.

KOSMEK LTD.
Harmony in Innovation

United States of America
KOSMEK (USA) LTD.
650 Springer Drive, Lombard, IL 60148 USA
TEL.+1-630-620-7650 FAX.+1-630-620-9015

MEXICO
REPRESENTATIVE OFFICE
KOSMEK USA Mexico Office
Av. Santa Fe #103 int 59 Col. Santa Fe Juriquilla C.P. 76230 Queretaro, Qro Mexico
TEL.+52-442-161-2347

EUROPE
SUBSIDIARY
KOSMEK EUROPE GmbH
Schleppeplatz 2 9020 Klagenfurt am Worthersee Austria
TEL.+43-463-287587 FAX.+43-463-287587-20

CHINA
SUBSIDIARY
KOSMEK (CHINA) LTD.
Room601, RIVERSIDE PYRAMID No.55, Lane21, Pusan Rd, Pudong Shanghai 200125, China
TEL.+86-21-54253000

INDIA
BRANCH OFFICE
KOSMEK LTD. - INDIA
44/Old No:649, Ground Floor, 4th D cross, MM Layout, Kavalbyrasandra,
RT Nagar, Bangalore -560032 India
TEL.+91-9880561695

THAILAND
REPRESENTATIVE OFFICE
KOSMEK Thailand Representation Office
67 Soi 58, RAMA 9 Rd., Phatthanan, Suanlaing, Bangkok 10250, Thailand
TEL.+66-2-300-5132 FAX.+66-2-300-5133

CAT.NO. MA001-02-G8
Printed in Japan