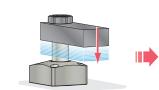
Hydraulischer Schwenkspanner

Modell LHA Modell LT/LG
Modell LHC Modell TLA-2
Modell LHS Modell TLA-1
Modell LHW Modell TLB-2

Hohe Festigkeit · Lange Lebensdauer · Hohe Genauigkeit

Hohe Geschwindigkeit • Hohe Festigkeit • Schwenkwinkel Wiederholgenauigkeit ±0.5° (±0.75° nur für LHS)

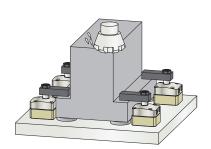
Funktionsbeschreibung



Vor dem Schwenken (Gelöste Position)

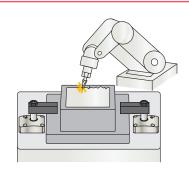
Der Hebel wird während der Schwenkbewegung abgesenkt.

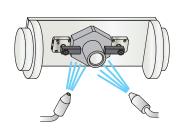
(Beim Modell LHS schwenkt der Hebel parallel.)

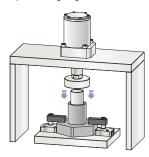


Nach Abschluss der Schwenkbewegung wird der Hebel in die Spannposition gebracht.

Vorgang abgeschlossen (Spannposition)


Anwendungsbeispiele

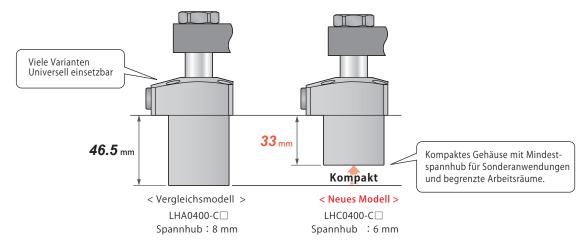

Maschinelle Bearbeitung


Für häufige Wiederholungen von Spannvorgängen

Entgraten

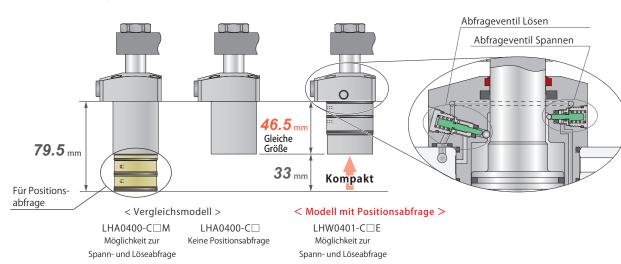
Reinigen

Einpressarbeiten


Neue Produkte

Kompakter Schwenkspanner

Modell LHC


Kompakter Schwenkspanner für kleine Vorrichtungen, die mit Mindesthub konzipiert sind.

Schwenkspanner mit Positionsabfrage

Modell **LHW**

Spann-/Löseabfrage mit eingebautem Drucksensor für kleinere Vorrichtungen.

High-Power Schwenkspanner hydraulisch doppelwirkend

Modell LHE

2 Baugrößen kleiner bei gleicher Spannkraft. Eine mechanische Sperre und hydraulischer Druck bieten eine große Spann- und Haltekraft. Siehe S. 13 für weitere Informationen.

High-Power-Serie

Pneumatik-Serie

Hydraulik-Serie

Ventile/Kupplung Hydraulikeinheit

Manuelle Produkte Zubehör

Hinweise/Sonstiges

Bohrungsspanner

SFA SFC

hwenkspanner

LHA LHC LHS

LT/LG TLA-2 TLB-2 TLA-1

Hebelspanner LKA

LKC
LKW
LM/LJ
TMA-2

TMA-1
Abstützelement

LD LC TNC

Zylinder mit Positionsabfrage

LLW

Kompaktzylinder

LL
LLR
LLU
DP
DR
DS
DT

Blockzylinder DBA

DBC

Regelventil BZL

> BZT BZX/JZG

Nullpunkt-Spannsystem VS

VT draulischer

Hydraulischer Positionszylinder

VL VM

VJ

Niederzug-Spannelement FP

FQ Kundenspezifischer Federspeicherzylinde

Ni	ederdruckmodell MAX. 7 MPa	Modell LHA	→ S.289	Modell LHC Doppelw	→ S.319	Modell LHS	
	sifikation 	Doppelw	irkend	Komp		Parallele Schw	
Betri	iebsdruckbereich	1.5~7	MPa	1.5~7	MPa	1.5~7	MPa
Stan	dardmodell	Abmessungen	→ S.297	Abmessungen	→ S.327	Abmessungen	→ S.339
a,	Durchgehende Kolbenstange für Watchdog	Abmessungen	→ S.299	_		*	
bfrage	Pneumatische Positionsabfrage bei Tieflochbohrung	Abmessungen	→ S.301	_		*	
Positionsabfrage	Pneumatische Positionsabfrage bei Verrohrung Möglichkeit, einen Luftsensor einzubauen	Abmessungen	→ S.303	_		*	
Posi	Modell mit eingebautem Abfrageventil	_		_		_	
	Schnellwechseloption	Abmessungen	→ S.305	*		Abmessungen	→ S.341
Option	Pendelaufnahme	Abmessungen	→ S.307	*		Abmessungen	→ S.343
Opt	Langhuboption	Abmessungen	→ S.309	_		*	
	Schwenkwinkel Option 30° 45° 60°	Abmessungen	→ S.313	*		Abmessungen	→ S.345
	Spannhebel	LZH-T、LZH-I	F、LZH-B → S.318	LZH-T	→ S.330	LZH-T、LZH	-F、LZH-B → \$.348
Zubehör	Anschlussblock	LZY-MD					→ S.1025
Zui	Geschwindigkeitsregelventil Stopfen	BZL、BZX、J	ZG				→ S.727

[※] Kontaktieren Sie uns für Detailmaße zu Teil ★.

Но	chdruckmodell MAX. 35 MPa	Modell TLA-	·2 → S.387	Modell TLB-	2 → S.413	Modell TLA-	1 → S.431
Klass	sifikation		wirkend :h oben	Doppelv Flansch		Einfachwirkend (Lö	isen mit Federkraft) hoben
Betri	ebsdruckbereich	7~35	МРа	7~35	MPa	7~35	MPa
Stand	dardmodell	Abmessungen	→ S.395	Abmessungen	→ S.421	Abmessungen	→ S.439
	Pendelaufnahme Pendelaufnahme	Abmessungen	→ S.399	Abmessungen	→ S.423	_	
Option	Langhuboption Lang	Abmessungen	→ S.403	Abmessungen	→ S.425	_	
	Schwenkwinkel Schwenkwinkel Option 30° 45° 60°	Abmessungen	→ S.407	Abmessungen	→ S.427	_	
	Spannhebel	TLZ-L2、TL	Z-LB → \$.412	TLZ-L2、TL	Z-LB → \$.429	TLZ-L2、TLZ	Y-LB → \$.443
Zubehör	Geschwindigkeitsregelventil Stopfen	BZT、JZG					→ S.727
Zı	G-Verschraubung O	G-Verschra	aubung (herg	gestellt von Ih	ara Science)		→ S.1039

Niederdruckmodell

MAX. 7 MPa

Modell LHW \rightarrow S.349 Modell LT/LG \rightarrow S.367

Klass	ifikation	Doppelwirkend Eingebautes Abfrageventil	Einfachwirkend (Lösen mit Federkraft)
Betri	ebsdruckbereich	1.5∼7 MPa	2.5∼7 MPa
Stan	dardmodell	_	Abmessungen → \$.375
age	Durchgehende Kolbenstange für Watchdog	_	-
ısabfra	Pneumatische Positionsabfrage bei Tieflochbohrung	_	_
Positions abfrage	Pneumatische Positionsabfrage Möglichkeit, einen Luftsensor einzubauen	-	-
	Modell mit eingebautem Abfrageventil	Abmessungen → \$.359	_
	Schnellwechseloption	*	Abmessungen → \$.377
Option	Pendelaufnahme 🙃	*	Abmessungen → S.379
0 pt	Langhuboption	_	_
	Schwenkwinkel Option 30° 45° 60°	*	Abmessungen → 5.381
ör	Spannhebel	LZH-T → \$.366	LZ-LE1、LZ-LE2 LZH-F、LZH-B → \$.384
Zubehör	Anschlussblock	_	LZ-MS → \$.1026
	Geschwindigkeitsregelventil Stopfen	BZL、BZX、JZG	→ S.727

High-Power Schwenkspanner hydraulisch doppelwirkend

Modell LHE

2 Baugrößen kleiner bei gleicher Spannkraft. Eine mechanische Sperre und hydraulischer Druck gewähren eine große Spann- und Haltekraft. Siehe S. 13 für weitere Informationen.

High-Power-Serie

Pneumatik-Serie

Hydraulik-Serie

Ventile/Kupplung Hydraulikeinheit

Manuelle Produkte Zubehör

Hinweise/Sonstiges

Bohrungsspanner SFA

SFC

LHC LHW LT/LG TLA-2 TLB-2 TLA-1

Hebelspanner

LKA LKC LKW LM/LJ TMA-2 TMA-1

Abstützelement

LD LC TC

Zylinder mit Positionsabfrage

LLW

Kompaktzylinder

LLR LLU DP DR

DT Blockzylinder

DS

DBA DBC

Regelventil BZL

BZT BZX/JZG

Nullpunkt-Spannsystem

٧S VT

Hydraulischer Positionszylinder

٧L VM ٧J ٧K

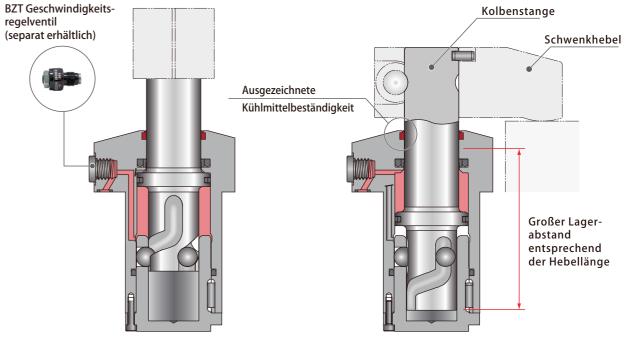
Niederzug-Spannelement FΡ

FQ

Kundenspezifischer Federspeicherzylinder DWA/DWB

Hydraulisch doppelwirkender Schwenkspanner

Modell TLA-2


Hochdruck (7~35 MPa) Flansch oben

Index

lyc	draulischer Schwenkspanner Übersicht ————————————————————————————————————	S.285
un	ktionsbeschreibung —————	S.388
100	dell Nomenklatur ————————————————————————————————————	S.389
pe	zifikationen ———————————————————————————————————	S.390
eis	stung	
•	Spannkraft ————	S.391
•	Diagramm zulässige Schwenkzeit ————————————————————————————————————	S.393
br	nessungen	
•	Flansch oben / Standardmodell (TLA-2)	S.395
•	Flansch oben / Pendelaufnahme (TLA-2-P)	S.399
•	Flansch oben / Langhuboption (TLA-2-Q)	S.403
•	Flansch oben / Schwenkwinkel Option (TLA-2-Y \square)	S.407
ра	nnhebel Abmessungen ———————————————————————————————————	S.411
ub	pehör	
•	Schwenkhebelmaterial für TLA ———————————————————————————————————	S.411
•	Geschwindigkeitsregelventil •Stopfen	S.727
lin	weise	
•	Anmerkungen zu hydraulischen Schwenkspannern ————	S.445
•	Hinweise (allgemein) •Einbauhinweise •Liste Hydraulikflüssigkeiten •Hinweise zur Verwendung von hydraulischer Drosselventilen •Hinweise zum Umgang •Wartung/Inspektion •Garantie	

Funktionsbeschreibung

Beim Lösen

Ausführung des Lösevorgangs durch Zufuhr von hydraulischem Druck zum Löseanschluss. Beim Spannen

Geschwindigke

Ausführung des Spannvorgangs durch Zufuhr von hydraulischem Druck zum Spannanschluss.

Möglichkeit, längere Hebel zu verwenden

Der große Lagerabstand ermöglicht die Verwendung längerer Spannhebel durch Stützung der Kolbenstange. Die Führung befindet sich zwischen dem Flansch und dem Rand der Kolbenstange.

• Hohe Geschwindigkeit und hohe Beständigkeit durch Drehmechanismus

Möglichkeit, längere Hebel zu verwenden

Durch Vergrößerung des Kolbenstangendurchmessers, die Verwendung größerer Stahlkugeln und die Ausführung der Führungsnut werden eine hohe Beständigkeit und ein geringeres Drehmoment erzielt.

Ausgezeichnete Kühlmittelbeständigkeit

Unser spezieller Abstreifer ist zum Schutz vor Hochdruckkühlmittel konzipiert. Durch Verwendung eines Dichtungsmaterials mit ausgezeichneter chemischer Beständigkeit ist er auch äußerst beständig gegen Kühlmittel auf Chlorbasis.

• Direkte Anschlussmöglichkeit eines Geschwindigkeitsregelventils

Bei einem O-Ring-Anschluss (-C Option) ist es möglich, ein BZT Geschwindigkeitsregelventil mit Be-/Entlüftungsfunktion anzuschließen. (Geschwindigkeitsregelventil separat erhältlich.) High-Power-

Pneumatik-Serie

Ventile/Kupplung Hydraulikeinheit

Bohrungsspanne SFA

SFC

LHA LHC LHS LHW

TLB-2 TLA-1

Hebelspanner LKA LKC

LKW LM/LJ TMA-2 TMA-1

LD

LC TNC TC Zylinder mit Positionsabfrage

LLW Kompaktzylinde

> LLR DP DR

DS DT Blockzylinder

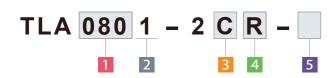
> DBA DBC

Regelventil

BZL BZT BZX/JZG

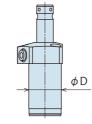
Spannsystem ٧S

VT Hydraulischer


> VM ٧J

VK

FQ Kundenspezifischer

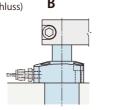

KOSMEK

Modell Nr. Bezeichnung

1 Baugröße (Spannkraft)

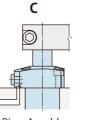
040: φD=28.5mm **160**: φD=46mm **060** : φ D=33mm **200**: φD=56mm **080**: φD=36mm **250** : φD=63mm **100**: φD=43mm **400**: φD=90mm st Außendurchmesser (ϕ D) des Zylinders.

2 Konstruktionsnummer

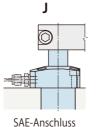

1 : Revisionsnummer

3 Anschlussmethode

B: G-Gewinde Rohrleitungsanschluss (Ohne O-Ring-Anschluss) **C**: O-Ring-Anschluss (Mit G-Gewindestopfen)


J : SAE-Anschluss (Ohne O-Ring-Anschluss)

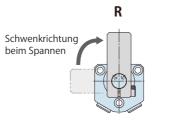
* Geschwindigkeitsregelventil (BZT) ist separat erhältlich. Siehe S. 727.

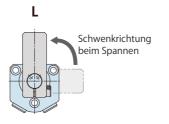

Kein O-Ring-

Anschluss

Anschlussmöglichkeit eines

Geschwindigkeitsregelventils




O-Ring-Anschluss G-Gewinde Rohrleitungsanschluss G-Gewinde Mit G-Gewindestopfen

SAE-Anschluss Kein O-Ring-Anschluss

4 Schwenkrichtung beim Spannen

R: im Uhrzeigersinn L : gegen den Uhrzeigersinn

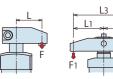
 $Y \square$

5 Option

: Ohne (Standard: Schnellwechseloption) Leer

(Y30:30° / Y45:45° / Y60:60°)

: Pendelaufnahme : Langhuboption Q $Y \square$: Schwenkwinkel Option


Spezifikationen

Modell Nr.			TLA	0401-2	I - -	TLA0601-2□□-□			TLA0801-2			TLA1001-2]	
Kolbenfläche		cm ²		1.005			1.453			1.979		2.804			
Spannkraft	5 Leer/Q/Y□ gewählt		F= -10	P).94+0.0	36×L	F=	$F = \frac{P}{7.57 + 0.024 \times L}$			P .53+0.01	47×L	$F = \frac{P}{3.91 + 0.0094 \times L}$		94×L	
$\begin{array}{c} \text{(Berechnungsformel)} \& N \\ \\ & \mathbf{kN} \end{array}$	5 P gewählt		,	2/L3)×0.7 1/L3)×0.1		,	2/L3)×0.1 1/L3)×0.1		$F_1 = (L_2/L_3) \times 0.198 \times P$ $F_2 = (L_1/L_3) \times 0.198 \times P$			$F_1 = (L_2/L_3) \times 0.280 \times 0.$			
	Gesamthub	mm		14			15			18		19.5			
	Schwenkhub (90°)	mm		6			7		8				9.5		
5 Leer/P	Vertikalhub	mm		8		8 10							10		
gewählt	Schwenkwinkel Gena	uigkeit						90° :	±3°						
	Schwenkwinkel Wiederholgen	auigkeit						±0	.5°						
	Gesamthub	mm	22				23			28			29.5		
	Schwenkhub (90°)	mm	6			7			8						
5 Q gewählt	, ,		16 16 20							20					
	Q gewählt Vertikalhub Schwenkwinkel Genauigk							90° :	±3°						
	Schwenkwinkel Wiederholgen	auigkeit						±0	.5°						
	Option		Y30	Y45	Y60	Y30	Y45	Y60	Y30	Y45	Y60	Y30	Y45	Y60	
	Gesamthub	mm	11.7	12.3	12.9	12.2	12.9	13.6	14.9	15.7	16.5	15.7	16.7	17.6	
5 Y□ gewählt	Schwenkhub (90°)	mm	3.7	4.3	4.9	4.2	4.9	5.6	4.9	5.7	6.5	5.7	6.7	7.6	
o i 🗆 gewanii	Vertikalhub	mm	8	8	8	8	8	8	10	10	10	10	10	10	
	Schwenkwinkel Gena	uigkeit	30° ±3°	45° ±3°	60° ±3°	30° ±3°	45° ±3°	60° ±3°	30° ±3°	45° ±3°	60° ±3°	30° ±3°	45° ±3°	60° ±3°	
	Schwenkwinkel Wiederholgen	auigkeit						±0	.5°						
Max. Betriebsdr	uck	MPa						35	5.0						
Min. Betriebsdru	n. Betriebsdruck **2							7.	.0						
Prüfdruck	üfdruck M				42.0										
Betriebstemper	triebstemperatur °							0 ~	70						
Medium	dium					S	tandard-	Hydrauli	köl nach	ISO-VG-	32				

Modell Nr.			TLA	1601-2		TLA	2001-2]	TLA	2501-2]	TLA	4001-2]		
Kolbenfläche		cm^2		4.170			6.134			8.198			12.37			
Spannkraft	5 Leer/Q/Y□ gewählt		F= -2.	P 59+0.00	46×L	F=	P .76+0.0	028×L	F= -1.	P 32+0.00	18×L	$F = \frac{P}{0.87 + 0.0011 \times L}$				
(Berechnungsformel) *1	E D accountlelle		F1= (L2	2/L3)×0.4	117×P	F1= (L2/L3)×0.613×P			F1= (L2/L3)×0.820×P			F1= (L	2/L3)×1.	237×P		
kN	5 P gewählt		F2= (L1	/L3)×0.4	17×P	F2= (L1/L3)×0.613×P			F2= (L1	/L3)×0.8	320×P	F2= (L	1/L3)×1.	237×P		
	Gesamthub	mm		24			26.5			32		35.5				
	Schwenkhub (90°)	mm		11			13.5			16			19.5			
5 Leer/P	Vertikalhub	mm		13			13			16			16			
gewählt	Schwenkwinkel Genauig	keit		90° ±3°												
	Schwenkwinkel Wiederholgenauig	jkeit						±0	.5°							
	Gesamthub	mm				38.5			48			51.5				
	Schwenkhub (90°)						13.5			16			19.5			
5 Q gewählt	Vertikalhub	mm		25			25			32			32			
	Schwenkwinkel Genauig	keit		90° ±3°												
	Schwenkwinkel Wiederholgenauig	gkeit						±0	.5°							
	Option		Y30	Y45	Y60	Y30	Y45	Y60	Y30	Y45	Y60	Y30	Y45	Y60		
	Gesamthub	mm	19.5	20.6	21.7	21.2	22.6	23.9	26.1	27.6	29.0	27.6	29.5	31.5		
5 Y□ gewählt	Schwenkhub (90°)	mm	6.5	7.6	8.7	8.2	9.6	10.9	10.1	11.6	13.0	11.6	13.5	15.5		
J I gewanii	Vertikalhub	mm	13	13	13	13	13	13	16	16	16	16	16	16		
	Schwenkwinkel Genauig	keit	30° ±3°	45° ±3°	60° ±3°	30° ±3°	45° ±3°	60° ±3°	30° ±3°	45° ±3°	60° ±3°	30° ±3°	45° ±3°	60° ±3°		
	Schwenkwinkel Wiederholgenauig	jkeit						±0	.5°							
Max. Betriebsdru	ıck	MPa						3.	5.0							
Min. Betriebsdru	ck **2	MPa	7.0													
Prüfdruck		MPa														
Betriebstempera	tur	°C							- 70							
Medium				Standard-Hydrauliköl nach ISO-VG-32												

Anmerkungen

- %1. F, F1, F2: Spannkraft (kN) P: Hydraulischer Versorgungsdruck (MPa) L, L1, L2: Distanz zwischen Kolben und Spannpunkt (mm) L3:(mm).
- *2. Minimaldruck, um den Spanner ohne Last zu betreiben.
- 1. Siehe Abmessungen, wenn Sie Informationen zur Masse und zum Zylindervolumen benötigen.

High-Power-

Pneumatik-Serie

Ventile/Kupplung

Manuelle Produkte Zubehör

Hydraulikeinheit

Bohrungsspanne SFA SFC

LHA LHC LHS LHW TLB-2

TLA-1 Hebelspanner LKA LKC LKW

TMA-2 TMA-1 Abstützelemen LD

LM/LJ

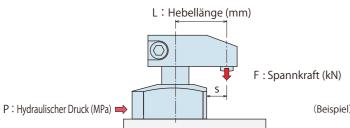
TNC TC Zylinder mit Positionsabfrage LLW

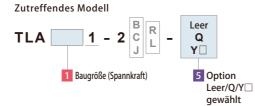
Kompaktzylinde LLR LLU DP DR DS DT

Blockzylinder DBA DBC

Regelventil BZL BZT BZX/JZG Nullpunkt-Spannsystem

٧S VT Hydraulischer

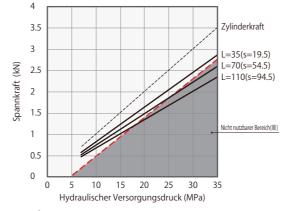

VM ٧J VK Niederzug-Spannelement

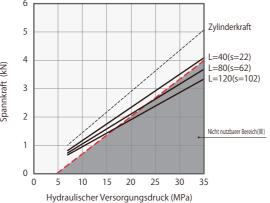

> Kundenspezifischer DWA/DWB

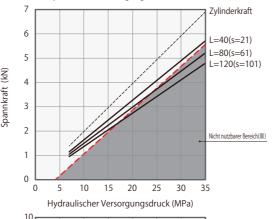
FQ

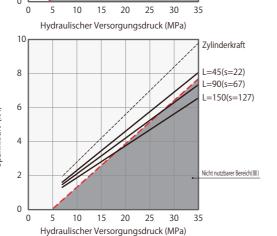
Spannkraftverlauf

※ TLA □ 1-2□□-P: Bei der Pendelaufnahme weicht der Spannkraftverlauf vom Diagramm ab. Berechnen Sie den Verlauf mit der Formel für die Spezifikation.


(Beispiel) Bei Verwendung von TLA1601-2 Hydraulischer Versorgungsdruck 25.0 MPa, Hebellänge L=50 mm, Spannkraft ca. 8.9 kN.


Hydraulischer Druck (MPa) Zylinderkraft (kN) Spannkraft (kN) Nicht nutzbarer Bereich (IIII) Max. Hebellänge L (mm) Max. Hebellänge L (mm)	TLA040)1-2 Spannkra	ft Berechnun	igsformel *	^{{1} (k	N) F :	= P /	(10.9	94 + 0	.036×	(L)
(MPa) L=35 L=40 L=50 L=60 L=70 L=80 L=90 L=110 (mm) 35 3.52 2.9 2.9 2.9 48 48 32.5 3.27 2.7 2.7 2.6 52 52 30 3.02 2.5 2.5 2.4 57 57 27.5 2.77 2.3 2.3 2.2 2.1 52 63 25 2.52 2.1 2.1 2.0 1.9 71 81 20 2.01 1.7 1.7 1.6 1.6 1.5 1.5 1.5 95 17.5 1.76 1.5 1.5 1.4 1.4 1.4 1.3 1.3 1.2 113 15 1.51 1.3 1.3 1.2 1.2 1.2 1.1 1.1 1.1 11 11 11 11 11 11 11 11 1.0 1.0 1.0 0.9	Hydraulischer	Zylinderkraft			Spannk	raft (kN	۷)	Nicht nu	ıtzbarer Be	ereich(III)	Max. Hebel-
35 3.52 2.9 2.9 48 32.5 3.27 2.7 2.6 52 30 3.02 2.5 2.5 2.4 57 27.5 2.77 2.3 2.3 2.2 2.1 67 25 2.52 2.1 2.0 2.0 1.9 71 22.5 2.27 1.9 1.9 1.8 1.8 1.7 1.7 81 20 2.01 1.7 1.7 1.6 1.6 1.5 1.5 1.5 95 17.5 1.76 1.5 1.5 1.4 1.4 1.4 1.3 1.3 1.2 113 15 1.51 1.3 1.3 1.2 1.2 1.2 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.0 1.0 1.0 1.0 0.9 0.9 150 10 1.01 1.01 0.9 0.	Druck	(kN)			He	ebellän	ge L (mi	n)			länge (L)
32.5 3.27 2.7 2.6 52 30 3.02 2.5 2.5 2.4 57 27.5 2.77 2.3 2.3 2.2 2.1 63 25 2.52 2.1 2.0 2.0 1.9 71 22.5 2.27 1.9 1.9 1.8 1.8 1.7 1.7 81 20 2.01 1.7 1.7 1.6 1.6 1.5 1.5 1.5 95 17.5 1.76 1.5 1.5 1.4 1.4 1.4 1.3 1.3 1.2 113 15 1.51 1.3 1.3 1.2 1.2 1.2 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.0 0.9 0.9 150 10 1.01 0.9 0.9 0.8 0.8 0.8 0.8 0.8 0.7 150	(MPa)		L=35	L=40	L=50	L=60	L=70	L=80	L=90	L=110	(mm)
30 3.02 2.5 2.5 2.4 57 27.5 2.77 2.3 2.3 2.2 2.1 63 25 2.52 2.1 2.0 1.9 71 81 20 2.01 1.7 1.7 1.6 1.6 1.5 1.5 1.5 95 17.5 1.76 1.5 1.5 1.4 1.4 1.4 1.3 1.3 1.2 113 15 1.51 1.3 1.3 1.2 1.2 1.2 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.0 0.9 0.9 0.8 0.8 0.8 0.8 0.8 0.7 150	35	3.52	2.9	2.9							48
27.5 2.77 2.3 2.3 2.2 2.1 63 25 2.52 2.1 2.1 2.0 1.9 71 22.5 2.27 1.9 1.9 1.8 1.8 1.7 1.7 20 2.01 1.7 1.7 1.6 1.6 1.5 1.5 1.5 95 17.5 1.76 1.5 1.5 1.4 1.4 1.4 1.3 1.3 1.2 113 15 1.51 1.3 1.3 1.2 1.2 1.2 1.1 1.1 1.1 11 141 12.5 1.26 1.1 1.1 1.0 1.0 1.0 0.9 0.9 150 10 1.01 0.9 0.9 0.8 0.8 0.8 0.8 0.8 0.7 150	32.5	3.27	2.7	2.7	2.6						52
25 2.52 2.1 2.1 2.0 2.0 1.9 71 22.5 2.27 1.9 1.9 1.8 1.8 1.7 1.7 81 20 2.01 1.7 1.7 1.6 1.6 1.5 1.5 1.5 95 17.5 1.76 1.5 1.5 1.4 1.4 1.4 1.3 1.3 1.2 113 15 1.51 1.3 1.3 1.2 1.2 1.2 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.0 1.0 1.0 0.9 0.9 150 10 1.01 0.9 0.9 0.8 0.8 0.8 0.8 0.7 150	30	3.02	2.5	2.5	2.4						57
22.5 2.27 1.9 1.9 1.8 1.8 1.7 1.7 81 20 2.01 1.7 1.7 1.6 1.6 1.5 1.5 1.5 95 17.5 1.76 1.5 1.5 1.4 1.4 1.4 1.3 1.3 1.2 113 15 1.51 1.3 1.3 1.2 1.2 1.2 1.1 1.1 1.1 141 12.5 1.26 1.1 1.1 1.0 1.0 1.0 1.0 0.9 0.9 150 10 1.01 0.9 0.9 0.8 0.8 0.8 0.8 0.7 150	27.5	2.77	2.3	2.3	2.2	2.1					63
20 2.01 1.7 1.7 1.6 1.6 1.5 1.5 1.5 95 17.5 1.76 1.5 1.5 1.4 1.4 1.4 1.3 1.3 1.2 113 15 1.51 1.3 1.3 1.2 1.2 1.2 1.1 1.1 1.1 1.1 1.1 1.1 1.0 0.9 0.9 150 10 1.01 0.9 0.9 0.8 0.8 0.8 0.8 0.8 0.7 150	25	2.52	2.1	2.1	2.0	2.0	1.9				71
17.5 1.76 1.5 1.5 1.4 1.4 1.4 1.3 1.3 1.2 113 15 1.51 1.3 1.3 1.2 1.2 1.2 1.1 1.1 1.1 141 12.5 1.26 1.1 1.1 1.0 1.0 1.0 1.0 0.9 0.9 0.5 10 1.01 0.9 0.9 0.8 0.8 0.8 0.8 0.8 0.7 150	22.5	2.27	1.9	1.9	1.8	1.8	1.7	1.7			81
15 1.51 1.3 1.3 1.2 1.2 1.2 1.1 1.1 1.1 141 12.5 1.26 1.1 1.1 1.0 1.0 1.0 1.0 0.9 0.9 150 10 1.01 0.9 0.9 0.8 0.8 0.8 0.8 0.8 0.7 150	20	2.01	1.7	1.7	1.6	1.6	1.5	1.5	1.5		95
12.5 1.26 1.1 1.1 1.0 1.0 1.0 1.0 0.9 0.9 150 10 1.01 0.9 0.9 0.8 0.8 0.8 0.8 0.8 0.7 150	17.5	1.76	1.5	1.5	1.4	1.4	1.4	1.3	1.3	1.2	113
10 1.01 0.9 0.9 0.8 0.8 0.8 0.8 0.8 0.7 150	15	1.51	1.3	1.3	1.2	1.2	1.2	1.1	1.1	1.1	141
	12.5	1.26	1.1	1.1	1.0	1.0	1.0	1.0	0.9	0.9	150
7 074 06 06 06 06 06 06 06 06 06	10	1.01	0.9	0.9	0.8	0.8	0.8	0.8	0.8	0.7	150
/ 0./1 0.6 0.6 0.6 0.6 0.6 0.6 0.5 0.5 150	7	0.71	0.6	0.6	0.6	0.6	0.6	0.6	0.5	0.5	150
Max. Betriebsdruck (MPa) 35.0 35.0 33.6 28.8 25.4 22.8 20.8 17.9	Max. Betrieb	osdruck (MPa)	35.0	35.0	33.6	28.8	25.4	22.8	20.8	17.9	


TLA0601-2 Spannkraft Berechnungsformel 12 (kN) F = P / (7.57 + 0.024×L)												
Hydraulischer	Zylinderkraft		Spannkraft (kN) Nicht nutzbarer Bereich(■)									
Druck	(kN)			He	ebelläng	ge L (mi	m)			länge (L)		
(MPa)		L=40	L=50	L=60	L=70	L=80	L=90	L=100	L=120	(mm)		
35	5.09	4.2								49		
32.5	4.73	3.9	3.8							54		
30	4.36	3.6	3.5							59		
27.5	4.00	3.3	3.2	3.1						66		
25	3.64	3.0	2.9	2.8	2.8					74		
22.5	3.27	2.7	2.6	2.5	2.5	2.4				84		
20	2.91	2.4	2.3	2.3	2.2	2.2	2.1			98		
17.5	2.55	2.1	2.0	2.0	1.9	1.9	1.8	1.8		117		
15	2.18	1.8	1.8	1.7	1.7	1.6	1.6	1.6	1.5	145		
12.5	1.82	1.5	1.5	1.4	1.4	1.4	1.3	1.3	1.2	192		
10	1.46	1.2	1.2	1.2	1.1	1.1	1.1	1.1	1.0	200		
7	1.02	0.9	0.8	0.8	0.8	0.8	0.8	0.8	0.7	200		
Max. Betrie	bsdruck (MPa)	35.0 34.6 29.6 26.0 23.4 21.3							17.2			

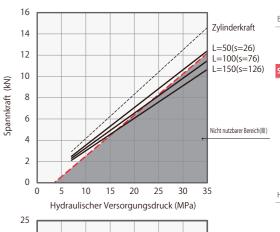

TLA080	01-2 Spannkra	ft Berechnur	ngsformel *	^{€1} (k	N) F	= P /	(5.53	3 + 0.0)147>	< L)
Hydraulischer	Zylinderkraft		9	pannkr	aft (kN)	Nicht nut	zbarer Ber	eich(III)	Max. Hebel-
Druck	(kN)			He	ebellän	ge L (mi	m)			länge (L)
(MPa)		L=40	L=50	L=60	L=70	L=80	L=90	L=100	L=120	(mm)
35	6.93	5.8	5.6							50
32.5	6.44	5.4	5.2							55
30	5.94	5.0	4.8	4.7						60
27.5	5.45	4.5	4.4	4.3						66
25	4.95	4.1	4.0	3.9	3.9					74
22.5	4.46	3.7	3.6	3.6	3.5	3.4				84
20	3.96	3.3	3.2	3.2	3.1	3.0	3.0			98
17.5	3.47	2.9	2.8	2.8	2.7	2.7	2.6	2.5		116
15	2.97	2.5	2.4	2.4	2.3	2.3	2.2	2.2	2.1	143
12.5	2.48	2.1	2.0	2.0	2.0	1.9	1.9	1.8	1.8	185
10	1.98	1.7	1.6	1.6	1.6	1.5	1.5	1.5	1.4	230
7	1.39	1.2	1.2	1.1	1.1	1.1	1.1	1.0	1.0	230
Max. Betrie	bsdruck (MPa)	35.0	35.0	30.0	26.3	23.5	21.4	19.6	17.1	

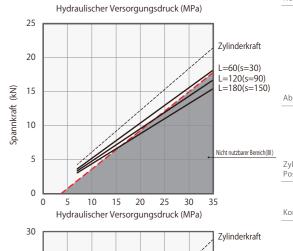
TLA100	01–2 Spannkra	ıft Berechnun	ngsformel *	1 (k	N) F :	= P /	(3.91	+ 0.0	0094>	(L)
Hydraulischer	Zylinderkraft		5	pannkr	aft (kN))	Nicht nut	zbarer Ber	eich(III)	Max. Hebel-
Druck	(kN)			He	ebelläng	ge L (mi	m)			länge (L)
(MPa)		L=45	L=50	L=60	L=70	L=90	L=110	L=130	L=150	(mm)
35	9.82	8.1	8.0	7.9						66
32.5	9.12	7.6	7.5	7.3	7.2					72
30			6.9	6.8	6.6					80
27.5	7.72	6.4	6.3	6.2	6.1					88
25	7.01	5.8	5.8	5.6	5.5	5.3				99
22.5	6.31	5.2	5.2	5.1	5.0	4.8	4.6			113
20	5.61	4.7	4.6	4.5	4.4	4.3	4.1	3.9		132
17.5	4.91	4.1	4.0	4.0	3.9	3.7	3.6	3.5	3.3	158
15	4.21	3.5	3.5	3.4	3.3	3.2	3.1	3.0	2.9	197
12.5	3.51	2.9	2.9	2.8	2.8	2.7	2.6	2.5	2.4	250
10	2.81	2.4	2.3	2.3	2.2	2.2	2.1	2.0	1.9	250
7	1.97	1.7	1.6	1.6	1.6	1.5	1.5	1.4	1.4	250
Max. Betrie	bsdruck (MPa)	35.0	35.0	35.0	33.4	27.1	23.0	20.2	18.2	

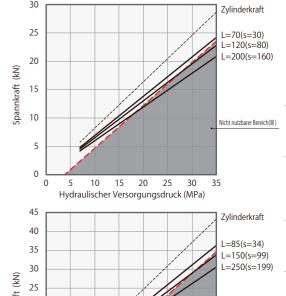
Anmerkungen

- 1. Die Tabellen und Diagramme zeigen die Wechselwirkungen von Spannkraft (kN) und hydraulischem Versorgungsdruck (MPa).
- 2. Die Zylinderkraft (wenn L=0) kann nicht aus der Berechnungsformel für die Spannkraft abgeleitet werden.

Leistung


- 3. Es kann vorkommen, dass es bei großer Trägheit je nach hydraulischem Versorgungsdruck oder Schwenkhebelmontageposition keine Schwenkhebelfunktion gibt.
- 4. Die angeführten Spannkräfte beziehen sich auf die Spannposition.
- 5. Die Spannkraft variiert je nach Spannhebellänge. Zulässigen hydraulischen Versorgungsdruck je nach Spannhebellänge beachten.
- 6. Ein Betrieb im nicht nutzbaren Bereich kann zu Schäden am Spannelement und Flüssigkeitsaustritt führen.
- 7. Die Tabellen und Diagramme dienen nur als Referenz. Die genauen Werte sind auf Basis der Formel in der Spezifikationentabelle zu berechnen.
- ※1. F: Spannkraft (kN), P: Hydraulischer Versorgungsdruck (MPa), L: Hebellänge (mm).


TLA1601-2 Spannkraft Berechnungsformel 18 (kN) F = P / (2.59 + 0.0046×L											(L)	
Hydraulischer	Zylinde	erkraft		S	pannkr	aft (kN))	Nicht nut	zbarer Ber	eich(III)	Max. Hebel-	
Druck	(kN	١)		Hebellänge L (mm)								
(MPa)			L=50	L=60	L=70	L=80	L=90	L=100	L=120	L=150	(mm)	
35	14.	60	12.5	12.3							62	
32.5	13.	56	11.6	11.4							67	
30	12.	51	10.7	10.5	10.4						73	
27.5	11.	47	9.8	9.6	9.5	9.3					81	
25	10.	43	8.9	8.8	8.6	8.5	8.4				90	
22.5	9.	39	8.0	7.9	7.8	7.7	7.5	7.4			102	
20	8.	34	7.1	7.0	6.9	6.8	6.7	6.6			118	
17.5	7.	30	6.3	6.2	6.1	6.0	5.9	5.8	5.6		139	
15	6.	26	5.4	5.3	5.2	5.1	5.0	5.0	4.8	4.6	169	
12.5	5.	22	4.5	4.4	4.3	4.3	4.2	4.1	4.0	3.9	215	
10	4.	17	3.6	3.5	3.5	3.4	3.4	3.3	3.2	3.1	250	
7	2.	92	2.5	2.5	2.5	2.4	2.4	2.3	2.3	2.2	250	
Max. Betriebs	druck (MPa)	35.0	35.0	31.3	27.8	25.1	22.9	19.7	16.4		


TLA2001-2 Spannkraft Berechnungsformel $^{18.1}$ (kN) F = P / (1.76 + 0.0028×L)											
Hydraulischer	Zylinderkraft		S	pannkr	aft (kN))	Nicht nut	zbarer Ber	eich(III)	Max. Hebel-	
Druck	(kN)				ebellän					länge (L)	
(MPa)		L=60	L=70	L=80	L=100	L=120	L=140	L=160	L=180	(mm)	
35	21.47	18.2	17.9							73	
32.5	19.94	16.9	16.7							79	
30	18.41	15.6	15.4	15.2						87	
27.5	16.87	14.3	14.1	13.9						96	
25	15.34	13.0	12.8	12.7	12.3					107	
22.5	13.81	11.7	11.6	11.4	11.1	10.8				121	
20	12.27	10.4	10.3	10.1	9.9	9.6	9.3			140	
17.5	10.74	9.1	9.0	8.9	8.6	8.4	8.2	8.0		165	
15	9.21	7.8	7.7	7.6	7.4	7.2	7.0	6.8	6.7	201	
12.5	7.67	6.5	6.4	6.4	6.2	6.0	5.9	5.7	5.6	258	
10	6.14	5.2	5.2	5.1	5.0	4.8	4.7	4.6	4.5	280	
7	4.30	3.7	3.6	3.6	3.5	3.4	3.3	3.2	3.1	280	
Max. Betriebs	sdruck (MPa)	35.0	35.0	32.2	26.5	22.7	20.0	17.9	16.3		

TLA250	01-2 Spannkr	aft Berechnur	ngsformel **	^{{1} (k	N) F :	= P /	(1.32	2 + 0.0	0018>	< L)
Hydraulischer	Zylinderkraft		S	pannkr	aft (kN))	Nicht nut	zbarer Ber	reich(III)	Max. Hebe
Druck	(kN)			He	ebelläng	ge L (mi	m)			länge (L)
(MPa)		L=70	L=80	L=90	L=100	L=120	L=140	L=160	L=200	(mm)
35	28.70	24.3	24.0	23.7						91
32.5	26.65	22.5	22.2	22.0						99
30	24.60	20.8	20.5	20.3	20.0					109
27.5	22.55	19.1	18.8	18.6	18.4	18.0				120
25	20.50	17.3	17.1	16.9	16.7	16.3				134
22.5	18.45	15.6	15.4	15.2	15.0	14.7	14.4			153
20	16.40	13.9	13.7	13.5	13.4	13.1	12.8	12.5		176
17.5	14.35	12.2	12.0	11.9	11.7	11.4	11.2	10.9	10.5	208
15	12.30	10.4	10.3	10.2	10.0	9.8	9.6	9.4	9.0	255
12.5	10.25	8.7	8.6	8.5	8.4	8.2	8.0	7.8	7.5	300
10	8.20	7.0	6.9	6.8	6.7	6.6	6.4	6.3	6.0	300
7	5.74	4.9	4.8	4.8	4.7	4.6	4.5	4.4	4.2	300
Max. Betriebs	sdruck (MPa)	35.0	35.0	35.0	32.3	27.5	24.2	21.6	18.1	
	,									,

TLA400	01–2 Spannkra	ft Berechnur	ngsformel **	1 (k	N) F :	= P /	(0.87	7 + 0.0	011>	<l)< th=""></l)<>			
Hydraulischer	Zylinderkraft		Spannkraft (kN) Nicht nutzbarer Bereich(■)										
Druck	(kN)		Hebellänge L (mm)										
(MPa)		L=85	L=100	L=125	L=150	L=175	L=200	L=225	L=250	(mm)			
35	43.30	36.4	35.8	34.8						126			
32.5	40.21	33.8	33.2	32.3						138			
30	37.11	31.2	30.7	29.8	29.0					151			
27.5	34.02	28.6	28.1	27.3	26.6					168			
25	30.93	26.0	25.6	24.9	24.2	23.6				189			
22.5	27.84	23.4	23.0	22.4	21.8	21.2	20.7			216			
20	24.74	20.8	20.5	19.9	19.4	18.9	18.4	17.9	17.5	251			
17.5	21.65	18.2	17.9	17.4	17.0	16.5	16.1	15.7	15.3	301			
15	18.56	15.6	15.4	14.9	14.5	14.2	13.8	13.5	13.2	350			
12.5	15.47	13.0	12.8	12.5	12.1	11.8	11.5	11.2	11.0	350			
10	12.37	10.4	10.3	10.0	9.7	9.5	9.2	9.0	8.8	350			
7	8.66	7.3	7.2	7.0	6.8	6.6	6.5	6.3	6.2	350			
Max. Betrieb	sdruck (MPa)	35.0	35.0	35.0	30.2	26.6	23.9	21.8	20.1				

10 15 20 25 30 35 Hydraulischer Versorgungsdruck (MPa)

20

Pneumatik-Serie

High-Power-

Ventile/Kupplung Hvdraulikeinheit

Manuelle Produkte Zubehör

Hinweise/Sonstiges

Bohrungsspanne SFA SFC

> LHA LHC LHS LHW TLB-2

TLA-1 Hebelspanner LKA LKC LKW LM/LJ

> TMA-2 TMA-1

LD TNC

TC Zylinder mit Positionsabfrage LLW

Kompaktzylinde LLR LLU

DR

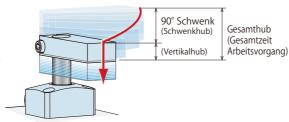
DS DT Blockzylinde DBA DBC

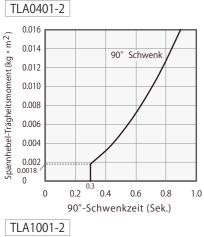
Regelventil BZL BZT BZX/JZG

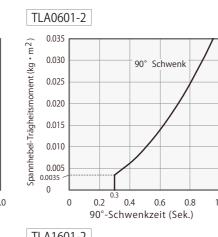
Spannsystem VT Hydraulischer

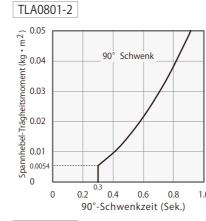
VM ٧J VK

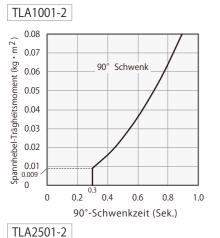
licht nutzbarer Bereich(

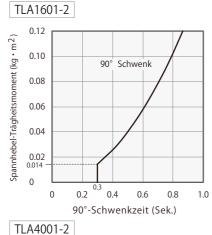

FQ Kundenspezifischer

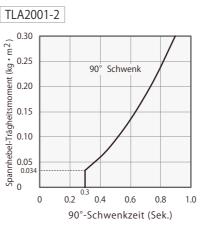

Diagramm zulässige Schwenkzeit

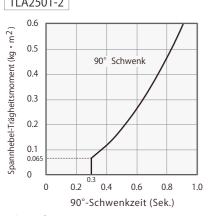

Einstellung der Schwenkzeit

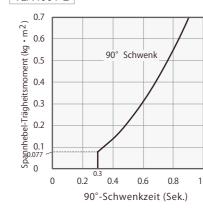

Das Diagramm zeigt die zulässige Schwenkzeit im Vergleich zum Trägheitsmoment des Hebels. Stellen Sie sicher, dass die Dauer des Arbeitsvorgangs länger als die im Diagramm dargestellte Zeit ist.

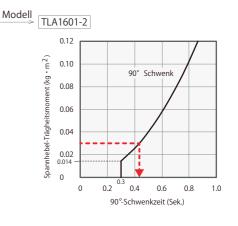

Eine zu hohe Funktionsgeschwindigkeit kann die Positionsgenauigkeit verringern und innenliegende Teile beschädigen.







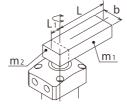



Anmerkungen

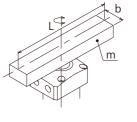
- 1. Das Diagramm zeigt das Verhältnis der 90°-Schwenkzeit zum Trägheitsmoment des Hebels.
- 2. Die Gesamtzeit des Schwenkhubs entspricht etwa 2 bis 2,5 Mal der 90°-Schwenkzeit.
- 3. Es kann vorkommen, dass es bei großer Trägheit je nach hydraulischem Versorgungsdruck, Ölfluss und Schwenkhebelmontageposition keine Schwenkhebelfunktion gibt.
- 4. Stellen Sie die Schwenkzeit mindestens auf die in den Diagrammen für das Trägheitsmoment angegebenen Werte ein.
- 5. Eine zu hohe Geschwindigkeit kann zu einer Verschlechterung der Winkelgenauigkeit und Schäden an innenliegenden Teilen führen.
- 6. Die Spannkraft variiert je nach Spannhebellänge. Wählen Sie den passenden Betriebsdruck aus dem angegebenen Spannkraftbereich.
- 7. Bei horizontaler Montage des Spanners kann es vorkommen, dass der Hebel durch sein eigenes Gewicht die Schwenkgeschwindigkeit auf einen Wert über das erlaubte Maß hinaus erhöht. Fügen Sie in diesem Fall ein Geschwindigkeitsregelventil in den Zulauf ein.
- 8. Die Lösezeit sollte mindestens 0.3 Sekunden betragen.
- 9. Kontaktieren Sie uns, wenn die Betriebsbedingungen von den in den Diagrammen abgebildeten abweichen.

(Interpretation des Diagramms der zulässigen Schwenkzeit) Bei Verwendung von TLA1601-2

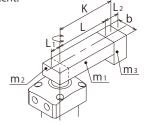
Trägheitsmoment des Spannhebels: 0.03 kg·m²


- 90°-Schwenkzeit : Ungefähr 0.43 Sek. oder länger
- · Gesamtzeit Arbeitsvorgang: Ungefähr 0.95 Sek. oder länger
- 1. Die Gesamtzeit im Diagramm bildet die zulässige Zeit des Arbeitsvorganges im Gesamthub ab. (Schwenkhub: 11 mm, Gesamthub: 24 mm)

Berechnung des Trägheitsmoments (geschätzt)


I:Trägheitsmoment (kg·m²) L,L1,L2,K,b:Länge (m) m,m1,m2,m3:Masse (kg)

1) Bei einer rechteckigen Platte (Quader) ist die Welle vertikal auf einer Seite der Platte.


$$I = m_1 \frac{4L^2 + b^2}{12} + m_2 \frac{4L_1^2 + b^2}{12}$$

② Bei einer rechteckigen Platte (Quader) ist die Welle vertikal zum Schwerpunkt der Platte

$$I = m \frac{L^2 + b^2}{12}$$

③ Die Last wird am Kopfende des Hebels aufgebracht.

$$I = m_1 \frac{4L^2 + b^2}{12} + m_2 \frac{4L_1^2 + b^2}{12} + m_3K^2 + m_3 \frac{L_2^2 + b^2}{12}$$

Berechnungsformel für die Gesamtzeit des Arbeitsvorganges

Gesamtzeit des Arbeitsvorganges (Sek.) = 90°-Schwenkzeit (Sek.) ×

Gesamthub (mm)

Schwenkhub (mm)

High-Power

Pneumatik-Serie

Ventile/Kupplung Hydraulikeinheit

Manuelle Produkte Zubehör

Hinweise/Sonstiges

Bohrungsspanner SFA SFC

LHA LHC

LHS LHW TLB-2

TLA-1 Hebelspanner

LKA LKC LKW LM/L TMA-2

TMA-1 Abstützelement LD

TNC TC Zylinder mit Positionsabfrage

LLW

Kompaktzylinde LLR

LLU DP DR DS DT

Blockzylinder DBA DBC

Regelventil BZL BZT

BZX/JZG Spannsystem ٧S

VT Hydraulischer

VM

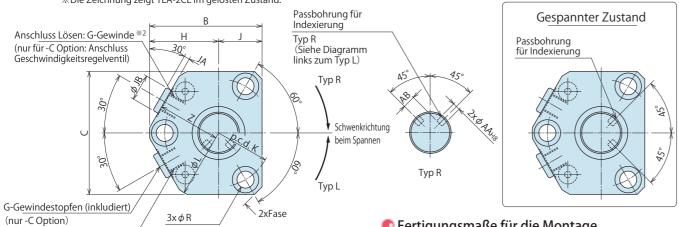
٧J ٧K

Niederzug-Spannelement

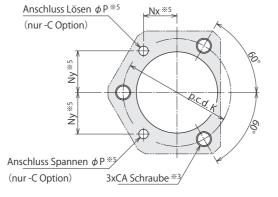
FQ Kundenspezifischer DWA/DWB

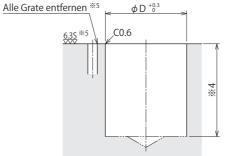
393

Abmessungen


Anschluss Spannen: G-Gewinde **2/

(nur für -C Option: Anschluss Geschwindigkeitsregelventil)

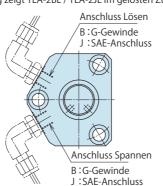

C: O-Ring-Anschluss (mit G-Gewindestopfen)


Planfläche ϕ Q

*Die Zeichnung zeigt TLA-2CL im gelösten Zustand.

Fertigungsmaße für die Montage

Anmerkungen


- *3. Die Gewindetiefe CA sollte so berechnet werden, dass die Befestigungsschrauben mindestens 1.5 x den Schraubendurchmesser in die Vorrichtung eingreifen.
- %4. Die Tiefe der Montagebohrung ϕ D sollte entsprechend der Abmessung F festgelegt werden.
- ※5. Dieser Vorgang zeigt -C: O-Ring-Anschluss.

Anschlussmethode

B: G-Gewinde Rohrleitungsanschluss

J: SAE-Anschluss

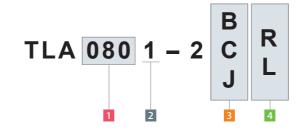
*Die Zeichnung zeigt TLA-2BL / TLA-2JL im gelösten Zustand.

Anmerkungen

Anschluss Lösen: O-Ring (inkludiert)

Anschluss Spannen: O-Ring (inkludiert)

(nur -C Option)


(nur -C Option)

%1. Befestigungsschrauben sind nicht im Lieferumfang enthalten. Stellen Sie Befestigungsschrauben gemäß der Einbauhöhe bereit. Siehe Abmessungen S.

 $\phi D_{-0.2}^{-0.1}$

- ※2. Geschwindigkeitsregelventil separat erhältlich. Sehen Sie ein solches unter Bezugnahme auf S. 727 vor.
- 1. Stellen Sie einen Schwenkhebel und Befestigungsschrauben wie auf S. 411 \sim S. 412 gezeigt bereit.

Modell Nr. Bezeichnung

2 Konstruktionsnummer

	angen and	ricitigaligali	aße für die Mo	Jillage			(m
Mode	ell Nr.	TLA0401-2□□	TLA0601-2	TLA0801-2	TLA1001-2	TLA1601-2□□	TLA2001-2
Gesan	nthub	14	15	18	19.5	24	26.5
Schwenkl	hub (90°)	6	7	8	9.5	11	13.5
Vertik	alhub	8	8	10	10	13	13
A	A	97.5	105	119	134.5	159.5	180
E	В	44	48	50.5	59.5	62	76.5
(C	45	52	54	65	68	83
[)	28.5	33	36	43	46	56
E	E	62.5	66	74	83	99.5	111.5
F	F	38.5	41	49	55	69.5	74.5
F	u	59	64	70	79.5	90	105.5
(G	24	25	25	28	30	37
ŀ	1	28.5	30	31.5	36.5	38	46.5
	J	15.5	18	19	23	24	30
ŀ	K	40	45	48	57	60	73.5
I	L	57	60	63	73	76	93
٨	И	10	10	10	10	10	13
N	lx	13.5	15	16	18	20	22
N	ly	16	17.5	18.5	22	22	28
F	-	3	3	3	3	3	5
(Q	9	11	11	14	14	17.5
F	R	5.5	6.8	6.8	9	9	11
9	5	14.5	14	14	14.5	16	19.5
	Г	16	17	20	21.5	26	28.5
Į	J	14	16	18	22	25	30
\	V	19	22	25	30	34	40
V	V	25.5	28	32.5	36.5	43	48.5
>	X	9.5	11	12.5	15	17	20
\	Y	12.5	14	16	19.5	22	26
7	Z	27	28.5	30	33	35	44
A	Α	3 +0.014	4 +0.018	4 +0.018	4 +0.018	4 +0.018	6 +0.018
A	ιB	4	4	5	7	8.5	9
А	ıC	3.5	4.5	4.5	4.5	5	6.5
CA (Gewinde	× Steigung)	M5×0.8	M6×1	M6×1	M8×1.25	M8×1.25	M10×1.5
J,		3	3	3	3	3	3.5
J	В	14	14	14	14	14	19
Fa	ise	3	(φ60)	(φ63)	(φ73)	(φ76)	(φ93)
	-B/-C Option	G1/8	G1/8	G1/8	G1/8	G1/8	G1/4
nschluss Lösen	-J Option	SAE2	SAE2	SAE2	SAE2	SAE2	SAE4
D-Ring	-C Option	1BP5	1BP5	1BP5	1BP5	1BP5	1BP7
	rbolzen (inkludiert)	φ3×6 (Typ B)	φ4×8 (Typ B)	φ4×8 (Typ B)	φ4×8 (Typ B)	φ4×8 (Typ B)	φ6×12 (Typ B
ylindervolumen	Spannen	1.4	2.2	3.6	5.5	10.0	16.3
cm ³	Lösen	3.6	5.2	8.1	12.9	21.8	35.0
Masse **6	kg	0.4	0.6	0.8	1.3	1.7	2.9

Anmerkung %6. Masse eines Einzelschwenkspanners ohne Schwenkhebel.

(Formatbeispiel: TLA0801-2CR、TLA1601-2BL)

1 Baugröße (Spannkraft)

3 Anschlussmethode

4 Schwenkrichtung beim Spannen

5 Option (Nicht verfügbar)

High-Power-

Ventile/Kupplung Hydraulikeinheit

Pneumatik-Serie

Manuelle Produkte Zubehör

Hinweise/Sonstiges

Bohrungsspanner SFA

SFC

LHA LHC LHS LHW

TLB-2 TLA-1

Hebelspanner LKA LKC LKW LM/LJ TMA-2 TMA-1

Abstützelemen LD TNC TC

Zylinder mit Positionsabfrage LLW

Kompaktzylinde LLR LLU

DP DR DS DT

Blockzylinder DBA

DBC Regelventil BZL BZT BZX/JZG Nullpunkt-

Spannsystem ٧S VT Hydraulischer

VM ٧J ٧K

Niederzug-Spannelement FQ

Kundenspezifischer DWA/DWB 4xCA Schraube **3

Abmessungen

(nur -C Option)

C: O-Ring-Anschluss (mit G-Gewindestopfen)

/4x φ R

*Die Zeichnung zeigt TLA-2CL im gelösten Zustand. Passbohrung für Gespannter Zustand Indexierung Typ R (Siehe Diagramm Anschluss Lösen: G-Gewinde *2 Passbohrung (nur für -C Option: Anschluss links zum Typ L) für Indexierung Geschwindigkeitsregelventil) beim Spannen Typ L G-Gewindestopfen (inkludiert)

Fertigungsmaße für die Montage

-

-

 ϕ D $^{+0.3}_{0}$

,C0.6

*3. Die Gewindetiefe CA sollte so berechnet werden, dass die

%4. Die Tiefe der Montagebohrung ϕ D sollte entsprechend

B: G-Gewinde Rohrleitungsanschluss

**Die Zeichnung zeigt TLA-2BL / TLA-2JL im gelösten Zustand.

durchmesser in die Vorrichtung eingreifen.

der Abmessung F festgelegt werden.

Anschlussmethode

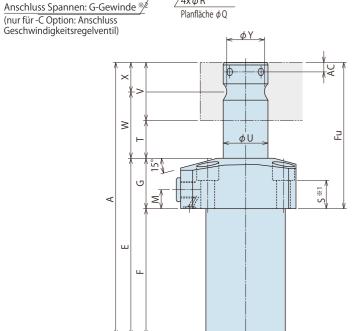
J: SAE-Anschluss

Anschluss Lösen

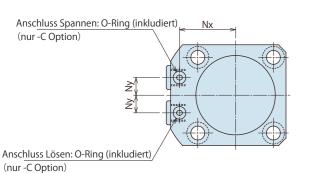
B:G-Gewinde J:SAE-Anschluss

Anschluss Spannen,

B:G-Gewinde

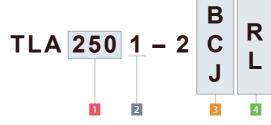

J:SAE-Anschluss

※5. Dieser Vorgang zeigt -C : O-Ring-Anschluss.

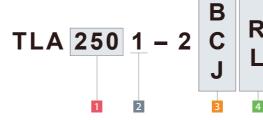

Befestigungsschrauben mindestens 1.5 x den Schrauben-

Anmerkungen

Alle Grate entfernen *5



 ϕ D $^{-0.1}_{-0.2}$



Anmerkungen

- *1. Befestigungsschrauben sind nicht im Lieferumfang enthalten. Stellen Sie Befestigungsschrauben gemäß der Einbauhöhe bereit. Siehe Abmessungen S.
- *2. Geschwindigkeitsregelventil separat erhältlich. Sehen Sie ein solches unter Bezugnahme auf S. 727 vor.
- 1. Stellen Sie einen Schwenkhebel und Befestigungsschrauben wie auf S. 411 \sim S. 412 gezeigt bereit.

Modell Nr. Bezeichnung

Abmessungen und Fertigungsmaße für die Montage

		c gg	(mn					
Mode	ell Nr.	TLA2501-2□□	TLA4001-2					
Gesar	nthub	32	35.5					
Schwenk	hub (90°)	16	19.5					
Vertik	alhub	16	16					
,	A	211	241					
	3	92	114					
(2	80	102					
[)	63	90					
1	E .	131	148.5					
	F	91	98.5					
F	u	120	142.5					
(ĵ	40	50					
ŀ	1	52	63					
	J	40	51					
	<	60	80					
	L	118	146					
N	И	15	17					
N	lx	45	56					
N	ly	16	21					
)	5	5					
(2	17.5	20					
	3	11	14					
	5	22.5	27.5					
	Г	34	37.5					
l	J	J /	J				35.5	45
,			46	55				
١	V	57	65					
)	(23	27.5					
,	r	31	39.5					
A	A	6 +0.018	8 +0.022					
A	ιB	11.75	14.5					
	C	6.5	9					
CA (Gewinde	× Steigung)	M10×1.5	M12×1.75					
	A 3	3.5	3.5					
	В	19	19					
	se	C6	C6					
	-B/-C Option	G1/4	G1/4					
Anschluss Lösen	-J Option	SAE4	SAE4					
O-Ring	-C Option	1BP7	1BP7					
	rbolzen (inkludiert)	φ6×12 (Typ B)	φ8×16 (Typ B)					
Zylindervolumen	Spannen	26.2	43.9					
cm ³	Lösen	57.9	100.4					
Masse **6	kg	4.3	9.2					
Anmerkung		ines Einzelschwenk						

%6. Masse eines Einzelschwenkspanners ohne Schwenkhebel.

(Formatbeispiel: TLA2501-2CR、TLA4001-2BL)

1 Baugröße (Spannkraft)

2 Konstruktionsnummer

3 Anschlussmethode

4 Schwenkrichtung beim Spannen

Option (Nicht verfügbar)

Bohrungsspanner SFA SFC

High-Power-

Pneumatik-Serie

Ventile/Kupplung

Manuelle Produkte

Hinweise/Sonstiges

Hydraulikeinheit

Zubehör

LHA LHC

LHS LHW

TLB-2 TLA-1

LKA LKC LKW

Hebelspanner

LM/LJ TMA-2 TMA-1

Abstützelemen LD

> TNC TC

Zylinder mit Positionsabfrage LLW

Kompaktzylinde

LLR LLU DP DR

DS DT Blockzylinder

> DBA DBC

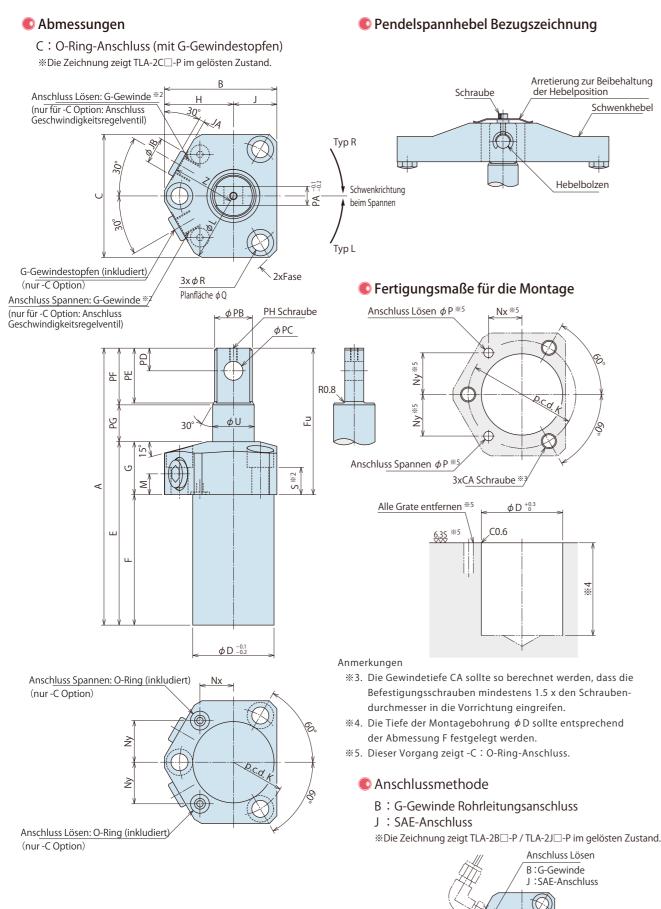
Regelventil BZL BZT BZX/JZG

Nullpunkt-Spannsystem ٧S

VT Hydraulischer

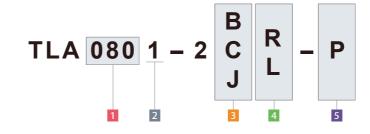
VM ٧J

٧K Niederzug-Spannelement


FQ

Kundenspezifischer DWA/DWB

Anschluss Spannen


J:SAE-Anschluss

B:G-Gewinde

- *1. Befestigungsschrauben sind nicht im Lieferumfang enthalten. Stellen Sie Befestigungsschrauben gemäß der Einbauhöhe bereit. Siehe Abmessungen S.
- ※2. Geschwindigkeitsregelventil separat erhältlich. Sehen Sie ein solches unter Bezugnahme auf S. 727 vor.

Modell Nr. Bezeichnung

(Formatbeispiel: TLA0801-2CR-P、TLA1601-2BL-P)

1 Baugröße (Spannkraft)

2 Konstruktionsnummer

3 Anschlussmethode

4 Schwenkrichtung beim Spannen

5 Option (Wenn P gewählt wird)

Abmessungen und Fertigungsmaße für die Montage

			aße für die Mo	_	T 11001 000	TI 14404 000 5	(mr
	ell Nr.	TLA0401-2 - P	TLA0601-2□□-P	TLA0801-2 -P	TLA1001-2 -P	TLA1601-2 -P	TLA2001-2 -P
	mthub	14	15	18	19.5	24	26.5
	thub (90°)	6	7	8	9.5	11	13.5
Vertik	calhub	8	8	10	10	13	13
	A	97.5	105	119	134.5	159.5	180
	В	44	48	50.5	59.5	62	76.5
(C	45	52	54	65	68	83
I	D	28.5	33	36	43	46	56
	E	62.5	66	74	83	99.5	111.5
	F	38.5	41	49	55	69.5	74.5
F	u	59	64	70	79.5	90	105.5
(G	24	25	25	28	30	37
	Н	28.5	30	31.5	36.5	38	46.5
	J	15.5	18	19	23	24	30
	K	40	45	48	57	60	73.5
	L	57	60	63	73	76	93
ı	M	10	10	10	10	10	13
1	٧x	13.5	15	16	18	20	22
N	Ny	16	17.5	18.5	22	22	28
	P	3	3	3	3	3	5
(Q	9	11	11	14	14	17.5
	R	5.5	6.8	6.8	9	9	11
	S	14.5	14	14	14.5	16	19.5
	U	14	16	18	22	25	30
	Z	27	28.5	30	33	35	44
F	PA	7	8	8	10	13	16
F	РВ	12	14	16	20	23	28
F	PC	6 ^{+0.018}	8 +0.022	8 +0.022	10 +0.022	12 +0.027	15 ^{+0.027}
P	PD	8.5	10	11	12	13.5	16.5
F	PE	18	21	24	28.5	32.5	38.5
F	PF	19	22	25	30	34	40
	PG	16	17	20	21.5	26	28.5
	e × Steigung)	M3×0.5	M3×0.5	M3×0.5	M4×0.7	M5×0.8	M6×1
	e × Steigung)	M5×0.8	M6×1	M6×1	M8×1.25	M8×1.25	M10×1.5
	JA	3	3	3	3	3	3.5
	JB	14	14	14	14	14	19
	ase	3	(φ60)	(φ63)	(φ73)	(φ76)	(φ93)
nschluss Spannen/	-B/-C Option	G1/8	G1/8	G1/8	G1/8	G1/8	G1/4
Anschluss Lösen	-J Option	SAE2	SAE2	SAE2	SAE2	SAE2	SAE4
O-Ring	-C Option	1BP5	1BP5	1BP5	1BP5	1BP5	1BP7
Zylindervolumen	Spannen	1.4	2.2	3.6	5.5	10.0	16.3
cm ³	Lösen	3.6	5.2	8.1	12.9	21.8	35.0
Masse **6		0.4	0.6	0.8	1.3	1.7	2.9
vidSSC	kg	0.4	0.0	0.0	1.3	1./	2.9

Anmerkung %6. Masse eines Einzelschwenkspanners ohne Schwenkhebel.

Pneumatik-Serie

High-Power-

Ventile/Kupplung Hydraulikeinheit

Manuelle Produkte

Zubehör Hinweise/Sonstiges

Bohrungsspanner

SFA SFC

LHA LHC

LHS LHW TLB-2 TLA-1

Hebelspanner LKA LKC LKW LM/LJ TMA-2

TMA-1 Abstützelemen LD TNC

TC Zylinder mit Positionsabfrage LLW

Kompaktzylinde LLR LLU DP

DR DS DT

Blockzylinder DBA DBC

Regelventil BZL BZT BZX/JZG Spannsystem

٧S VT Hydraulischer

VM ٧J ٧K

Niederzug-Spannelement

FQ Kundenspezifischer

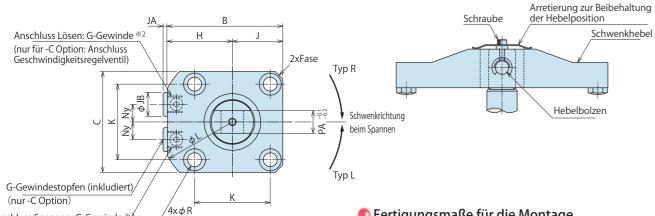
KOSMEK

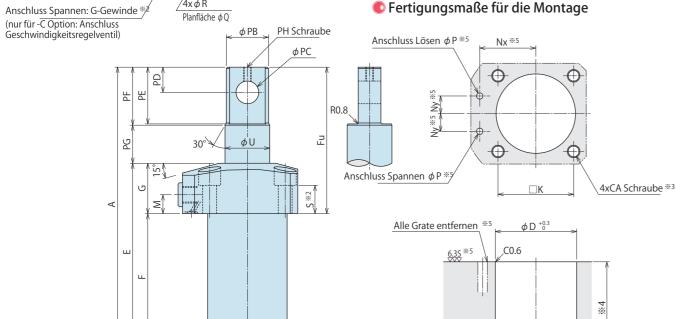
High-Power-

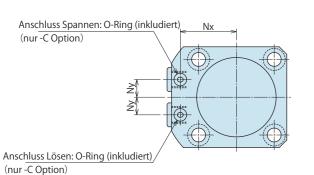
Pneumatik-Serie

Ventile/Kupplung

Hydraulikeinheit


Zubehör


Manuelle Produkte


Hinweise/Sonstiges

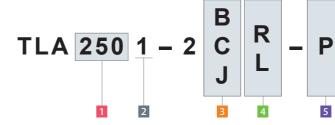
C: O-Ring-Anschluss (mit G-Gewindestopfen) % Die Zeichnung zeigt TLA-2C \square -P im gelösten Zustand.

 $\phi D_{-0.2}^{-0.1}$

Anmerkungen

- *3. Die Gewindetiefe CA sollte so berechnet werden, dass die Befestigungsschrauben mindestens 1.5 x den Schraubendurchmesser in die Vorrichtung eingreifen.
- %4. Die Tiefe der Montagebohrung ϕ D sollte entsprechend der Abmessung F festgelegt werden.
- %5. Dieser Vorgang zeigt -C: O-Ring-Anschluss.

Anschlussmethode


B: G-Gewinde Rohrleitungsanschluss

J: SAE-Anschluss

※Die Zeichnung zeigt TLA-2B□-P / TLA-2J□-Pim gelösten Zustand.

Anschluss Lösen B:G-Gewinde J:SAE-Anschluss Anschluss Spannen B:G-Gewinde

Modell Nr. Bezeichnung

(Formatbeispiel: TLA2501-2CR-P、TLA4001-2BL-P)

3 Anschlussmethode

4 Schwenkrichtung beim Spannen

5 Option (Wenn P gewählt wird)

1 Baugröße (Spannkraft)

2 Konstruktionsnummer

SFC

LHA

Bohrungsspanner SFA

> LHC LHS LHW

TLB-2 TLA-1

Hebelspanner

LKA LKC LKW LM/LJ TMA-2

TMA-1 Abstützelemen LD

TNC TC Zylinder mit Positionsabfrage

Kompaktzylinde

LLW

LLR LLU DP DR

DS DT Blockzylinder

DBA DBC

Regelventil BZL BZT BZX/JZG

Nullpunkt-Spannsystem ٧S

VT Hydraulischer

VM

٧J ٧K Niederzug-Spannelement

FQ Kundenspezifischer

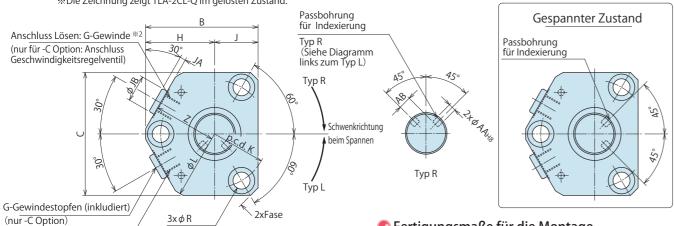
DWA/DWB

*1. Befestigungsschrauben sind nicht im Lieferumfang enthalten. Stellen Sie Befestigungsschrauben gemäß der Einbauhöhe bereit. Siehe Abmessungen S.

※2. Geschwindigkeitsregelventil separat erhältlich. Sehen Sie ein solches unter Bezugnahme auf S. 727 vor.

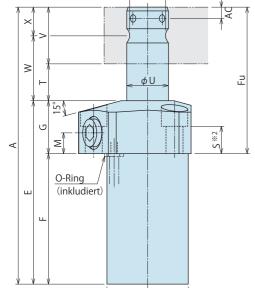
Abmessungen und Fertigungsmaße für die Montage TLA2501-2□□-P TLA4001-2□□-P

Mod	CII INI.	TLAZJOT ZUU T	ILA-001 ZUU I
Gesar	nthub	32	35.5
Schwenk	hub (90°)	16	19.5
Vertik	alhub	16	16
	A	211	241
-	В	92	114
(С	80	102
[)	63	90
1	E	131	148.5
-	F	91	98.5
F	u	120	142.5
(G .	40	50
I	Н	52	63
	J	40	51
I	K	60	80
I	L	118	146
ı	Λ	15	17
N	lx	45	56
N	ly	16	21
	P	5	5
(Q	17.5	20
-	R	11	14
	5	22.5	27.5
Į	J	35.5	45
Р	Α	18	24
Р	В	33.5	43
Р	C	18 ^{+0.027}	22 +0.033
Р	D	20	24.5
P	PE	44.5	53.5
P	F	46	55
Р	G	34	37.5
PH (Gewinde	× Steigung)	M6×1	M8×1.25
	× Steigung)	M10×1.5	M12×1.75
	A	3.5	3.5
J	В	19	19
Fa	ise	C6	C6
Anschluss Spannen/	-B/-C Option	G1/4	G1/4
Anschluss Lösen	-J Option	SAE4	SAE4
O-Ring	-C Option	1BP7	1BP7
Zylindervolumen	Spannen	26.2	43.9
cm ³	Lösen	57.9	100.4
Masse **6	kg	4.3	9.2

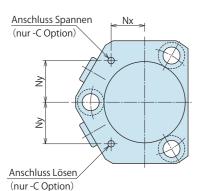

Anmerkung %6. Masse eines Einzelschwenkspanners ohne Schwenkhebel.

Abmessungen

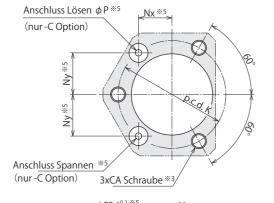
Anschluss Spannen: G-Gewinde *7

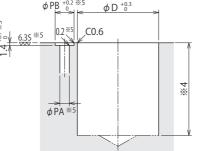

C: O-Ring-Anschluss (mit G-Gewindestopfen)

**Die Zeichnung zeigt TLA-2CL-Q im gelösten Zustand.



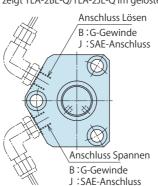
(nur für -C Option: Anschluss Geschwindigkeitsregelventil)


Planfläche ϕ Q



 $\phi D_{-0.2}^{-0.1}$

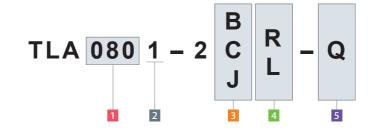
Fertigungsmaße für die Montage



- *3. Die Gewindetiefe CA sollte so berechnet werden, dass die Befestigungsschrauben mindestens 1.5 x den Schraubendurchmesser in die Vorrichtung eingreifen.
- %4. Die Tiefe der Montagebohrung ϕ D sollte entsprechend der Abmessung F festgelegt werden.
- ※5. Dieser Vorgang zeigt -C : O-Ring-Anschluss. Das Spannergehäuse hat keine O-Ring-Nut für den O-Ring-Anschluss. Deshalb muss die O-Ring-Nut auf der Seite der Montagefläche ausgeführt werden. (O-Ring zur Verfügung gestellt.)
- Anschlussmethode

B: G-Gewinde Rohrleitungsanschluss

J: SAE-Anschluss


**Die Zeichnung zeigt TLA-2BL-Q/TLA-2JL-Q im gelösten Zustand.

Anmerkungen

- %1. Befestigungsschrauben sind nicht im Lieferumfang enthalten. Stellen Sie Befestigungsschrauben gemäß der Einbauhöhe bereit. Siehe Abmessungen S.
- *2. Geschwindigkeitsregelventil separat erhältlich. Sehen Sie ein solches unter Bezugnahme auf S. 727 vor.
- 1. Stellen Sie einen Schwenkhebel und Befestigungsschrauben wie auf S. 411 \sim S. 412 gezeigt bereit.

Modell Nr. Bezeichnung

(Formatbeispiel: TLA0801-2CR-Q, TLA1601-2BL-Q)

1 Baugröße (Spannkraft)

2 Konstruktionsnummer

3 Anschlussmethode

4 Schwenkrichtung beim Spannen

5 Option (Wenn Q gewählt wird)

Abmessungen und Fertigungsmaße für die Montage

Mod	ell Nr.	TLA0401-2 -Q	TLA0601-2□□-Q	TLA0801-2 -Q	TLA1001-2 -Q	TLA1601-2 -Q	TLA2001-2 -Q
Gesai	mthub	22	23	28	29.5	36	38.5
Schwenk	thub (90°)	6	7	8	9.5	11	13.5
Vertik	calhub	16	16	20	20	25	25
	A	121.5	129	149	164.5	195.5	216
	В	44	48	50.5	59.5	62	76.5
	С	45	52	54	65	68	83
	D	28.5	33	36	43	46	56
	E	78.5	82	94	103	123.5	135.5
	F	54.5	57	69	75	93.5	98.5
F	-u	67	72	80	89.5	102	117.5
	G	24	25	25	28	30	37
	Н	28.5	30	31.5	36.5	38	46.5
	J	15.5	18	19	23	24	30
	K	40	45	48	57	60	73.5
	L	57	60	63	73	76	93
I	M	10	10	10	10	10	13
1	٧x	13.5	15	16	18	20	22
1	Ny	16	17.5	18.5	22	22	28
F	PA	3	3	3	3	3	5
F	РВ	8	8	8	8	8	10
	Q	9	11	11	14	14	17.5
	R	5.5	6.8	6.8	9	9	11
	S	14.5	14	14	14.5	16	19.5
	T	24	25	30	31.5	38	40.5
	U	14	16	18	22	25	30
	V	19	22	25	30	34	40
	W	33.5	36	42.5	46.5	55	60.5
	X	9.5	11	12.5	15	17	20
	Υ	12.5	14	16	19.5	22	26
	Z	27	28.5	30	33	35	44
	λA	3 +0.014	4 +0.018	4 +0.018	4 +0.018	4 +0.018	6 +0.018
F	AB	4	4	5	7	8.5	9
F	AC .	3.5	4.5	4.5	4.5	5	6.5
CA (Gewinde	e × Steigung)	M5×0.8	M6×1	M6×1	M8×1.25	M8×1.25	M10×1.5
	JA	3	3	3	3	3	3.5
	JB	14	14	14	14	14	19
Fa	ase	3	(<i>ф</i> 60)	(<i>ф</i> 63)	(\$ 73)	(\$ 76)	(φ 93)
Anschluss Spannen/	-B/-C Option	G1/8	G1/8	G1/8	G1/8	G1/8	G1/4
Anschluss Lösen	-J Option	SAE2	SAE2	SAE2	SAE2	SAE2	SAE4
O-Ring	-C Option	1BP5	1BP5	1BP5	1BP5	1BP5	1BP7
Hebel Mitnehmer	rbolzen (inkludiert)	φ3×6 (Typ B)	φ4×8 (Typ B)	φ4×8 (Typ B)	φ4×8 (Typ B)	φ4×8 (Typ B)	φ6×12 (Typ B)
Zylindervolumen	Spannen	2.2	3.4	5.6	8.3	15.0	23.4
cm ³	Lösen	5.7	8.0	12.6	19.5	32.7	50.8
Masse **6	kg	0.5	0.8	1.0	1.6	2.1	3.5

Anmerkung %6. Masse eines Einzelschwenkspanners ohne Schwenkhebel.

Pneumatik-Serie

High-Power-

Ventile/Kupplung Hydraulikeinheit

Manuelle Produkte Zubehör

Bohrungsspanne

SFA SFC

LHA LHC LHS

LHW TLB-2 TLA-1

Hebelspanner LKA LKC LKW LM/LJ TMA-2 TMA-1

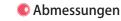
Abstützelemen LD TNC TC

Zylinder mit Positionsabfrage LLW

Kompaktzylinde LLR LLU DP DR DS

DT Blockzylinder DBA DBC

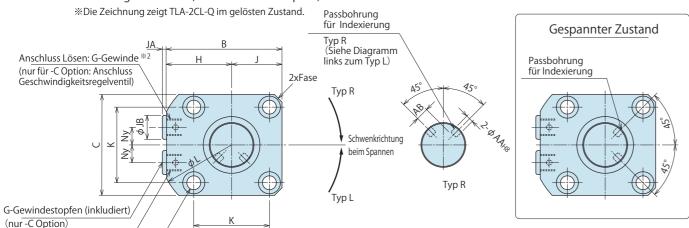
Regelventil BZL BZT BZX/JZG Nullpunkt-Spannsystem ٧S


VT Hydraulischer VM

٧J ٧K Niederzug-Spannelemen

Kundenspezifischer

FQ


4xCA Schraube **3

Anschluss Spannen: G-Gewinde *

C: O-Ring-Anschluss (mit G-Gewindestopfen)

4x φ R

Fertigungsmaße für die Montage

Nx **5

-

-

 $\phi D^{+0.3}$

,C0.6

*3. Die Gewindetiefe CA sollte so berechnet werden, dass die Befestigungsschrauben mindestens 1.5 x den Schrauben-

%4. Die Tiefe der Montagebohrung ϕ D sollte entsprechend

*5. Dieser Vorgang zeigt -C: O-Ring-Anschluss. Das Spanner-

ausgeführt werden. (O-Ring zur Verfügung gestellt.)

B: G-Gewinde Rohrleitungsanschluss

gehäuse hat keine O-Ring-Nut für den O-Ring-Anschluss.

Deshalb muss die O-Ring-Nut auf der Seite der Montagefläche

**Die Zeichnung zeigt TLA-2BL-Q/TLA-2JL-Q im gelösten Zustand.

durchmesser in die Vorrichtung eingreifen.

der Abmessung F festgelegt werden.

Anschlussmethode

J: SAE-Anschluss

Anschluss Lösen

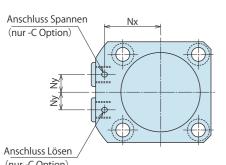
B:G-Gewinde J:SAE-Anschluss

Anschluss Spannen

B:G-Gewinde

J:SAE-Anschluss

Anschluss Lösen φ P **5

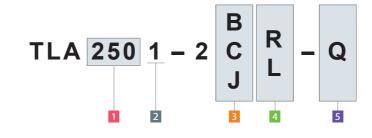

(nur -C Option)

Anschluss Spannen φ P *5/

(nur -C Option)

Planfläche ϕ Q (nur für -C Option: Anschluss O-Ring (inkludiert

 $\phi D^{-0.1}_{-0.2}$



(nur -C Option)

Anmerkungen

- *1. Befestigungsschrauben sind nicht im Lieferumfang enthalten. Stellen Sie Befestigungsschrauben gemäß der Einbauhöhe bereit. Siehe Abmessungen S.
- %2. Geschwindigkeitsregelventil separat erhältlich. Sehen Sie ein solches unter Bezugnahme auf S. 727 vor.
- 1. Stellen Sie einen Schwenkhebel und Befestigungsschrauben wie auf S. 411 \sim S. 412 gezeigt bereit.

Modell Nr. Bezeichnung

(Formatbeispiel: TLA2501-2CR-Q、TLA4001-2BL-Q)

1 Baugröße (Spannkraft)

2 Konstruktionsnummer

3 Anschlussmethode

4 Schwenkrichtung beim Spannen

5 Option (Wenn Q gewählt wird)

Mod	all Nr	TI A2501 200 0	(mr
	ell Nr.	TLA2501-2 Q	TLA4001-2 -Q
	nthub	48	51.5
Schwenkl		16	19.5
	alhub	32	32
	4	259	289
	3	92	114
	2	80	102
)	63	90
		163	180.5
	F	123	130.5
	u	136	158.5
	Ĵ	40	50
	1	52	63
	J	40	51
	<	60	80
	_	118	146
	Λ	15	17
	lx	45	56
	ly	16	21
	A	5	5
Р	В	10	10
	2	17.5	20
	?	11	14
	5	22.5	27.5
	Γ	50	53.5
l	J	35.5	45
\	/	46	55
V	V	73	81
)	<	23	27.5
,	Y	31	39.5
А	A	6 +0.018	8 +0.022
А	ιB	11.75	14.5
А	C	6.5	9
CA (Gewinde	× Steigung)	M10×1.5	M12×1.75
J	A	3.5	3.5
J	В	19	19
Fa	se	C6	C6
Anschluss Spannen/	-B/-C Option	G1/4	G1/4
Anschluss Lösen	-J Option	SAE4	SAE4
O-Ring	-C Option	1BP7	1BP7
	bolzen (inkludiert)	φ6×12 (B type)	ϕ 8×16 (B type)
Zylindervolumen	Spannen	39.3	63.7
cm ³	Lösen	86.9	145.7
Masse **6	kg	5.3	11.0

Anmerkung %6. Masse eines Einzelschwenkspanners ohne Schwenkhebel.

Pneumatik-Serie

High-Power-

Ventile/Kupplung Hydraulikeinheit

Manuelle Produkte Zubehör

Hinweise/Sonstiges

Bohrungsspanne SFA

SFC

LHA LHC LHS LHW

LT/LG TLB-2 TLA-1

Hebelspanner LKA LKC LKW LM/LJ

TMA-2 TMA-1 Abstützelemen

> LD TNC TC

Zylinder mit Positionsabfrage LLW

Kompaktzylinde LLR

LLU DP DR DS

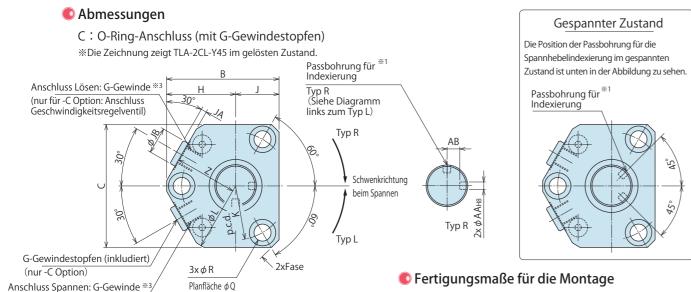
DT Blockzylinder DBA

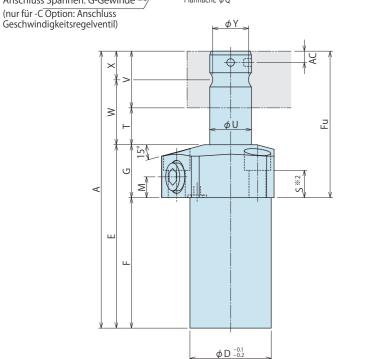
DBC

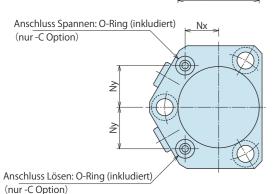
Regelventil BZL BZT

BZX/JZG Nullpunkt-Spannsystem

٧S VT

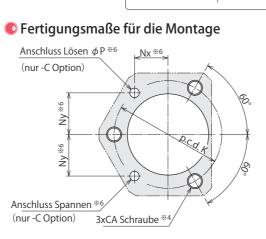

Hydraulischer

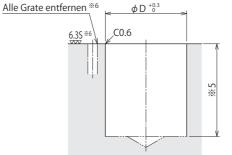

VM ٧J ٧K


Niederzug-Spannelement

FQ Kundenspezifischer

KOSMEK Harmony in Innovation



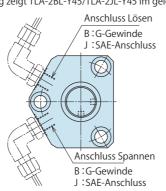

Anmerkungen

**1. Die Position der Passbohrung für die Spannhebelindexierung im gelösten Zustand ändert sich mit dem Schwenkwinkel.

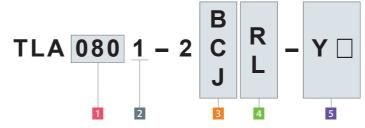
- ※2. Befestigungsschrauben sind nicht im Lieferumfang enthalten. Stellen Sie Befestigungsschrauben gemäß der Einbauhöhe bereit. Siehe Abmessungen S.
- 3. Geschwindigkeitsregelventil separat erhältlich.

 Sehen Sie ein solches unter Bezugnahme auf S. 727 vor.
- 1. Stellen Sie einen Schwenkhebel und Befestigungsschrauben wie auf S. 411 \sim S. 412 gezeigt bereit.

Anmerkungen


- **4. Die Gewindetiefe CA sollte so berechnet werden, dass die Befestigungsschrauben mindestens 1.5 x den Schraubendurchmesser in die Vorrichtung eingreifen.
- %5. Die Tiefe der Montagebohrung ϕ D sollte entsprechend der Abmessung F festgelegt werden.
- *6. Dieser Vorgang zeigt -C: O-Ring-Anschluss.

Anschlussmethode


B: G-Gewinde Rohrleitungsanschluss

J: SAE-Anschluss

**Die Zeichnung zeigt TLA-2BL-Y45/TLA-2JL-Y45 im gelösten Zustand.

Modell Nr. Bezeichnung

(Formatbeispiel: TLA0801-2CR-Y30、TLA1601-2BL-Y45)

Baugröße (Spannkraft)

2 Konstruktionsnummer

3 Anschlussmethode

4 Schwenkrichtung beim Spannen

5 Option (Wenn Y□ gewählt wird)

Abmessungen und Fertigungsmaße für die Montage

	sangen and																		(mm)
	ell Nr.		0401-2			0601-2			0801-2			001-2			1601-2		_	2001-2	
Schwen	ıkwinkel	30°	45°	60°	30°	45°	60°	30°	45°	60°	30°	45°	60°	30°	45°	60°	30°	45°	60°
Gesan	nthub	11.7	12.3	12.9	12.2	12.9	13.6	14.9	15.7	16.5	15.7	16.7	17.6	19.5	20.6	21.7	21.2	22.6	23.9
Schwe	enkhub	3.7	4.3	4.9	4.2	4.9	5.6	4.9	5.7	6.5	5.7	6.7	7.6	6.5	7.6	8.7	8.2	9.6	10.9
Vertik	calhub		8			8			10			10			13			13	
,	A	95.2	95.8	96.4	102.2	102.9	103.6	115.9	116.7	117.5	130.7	131.7	132.6	155	156.1	157.2	174.7	176.1	177.4
	В		44			48			50.5			59.5			62			76.5	
	C		45			52			54			65			68			83	
	D		28.5			33			36			43			46			56	
	E		62.5			66			74			83			99.5			111.5	
	F		38.5			41			49			55			69.5			74.5	
	u	56.7	57.3	57.9	61.2	61.9	62.6	66.9	67.7	68.5	75.7	76.7	77.6	85.5	86.6	87.7	100.2	101.6	102.9
	G		24			25			25			28			30			37	
l	Н		28.5			30			31.5			36.5			38			46.5	
	J		15.5			18			19			23			24			30	
I	K		40			45			48			57			60			73.5	
l	L		57			60			63			73			76			93	
Λ	М		10			10			10			10			10			13	
N	٧x		13.5			15			16			18			20			22	
N	١y		16			17.5			18.5			22			22			28	
l	Р		3			3			3			3			3			5	
(Q		9			11			11			14			14			17.5	
	R		5.5			6.8			6.8			9			9			11	
:	S		14.5			14			14			14.5			16			19.5	
-	Т	13.7	14.3	14.9	14.2	14.9	15.6	16.9	17.7	18.5	17.7	18.7	19.6	21.5	22.6	23.7	23.2	24.6	25.9
l	U		14			16			18			22			25			30	
1	V		19			22			25			30			34			40	
V	N	23.2	23.8	24.4	25.2	25.9	26.6	29.4	30.2	31.0	32.7	33.7	34.6	38.5	39.6	40.7	43.2	44.6	45.9
)	X		9.5			11			12.5			15			17			20	
,	Υ		12.5			14			16			19.5			22			26	
7	Z		27			28.5			30			33			35			44	
А	λA		3 +	0.014 0		4 +	0.018 0		4 +	0.018 0		4 +	0.018 0		4 +0	0.018 0		6 +0).018)
A	AB		4			4			5			7			8.5			9	
А	AC		3.5			4.5			4.5			4.5			5			6.5	
CA (Gewinde	e × Steigung)	I	M5×0.	8		M6×1			M6×1		N	18×1.2	25	N	Л8×1.2	25	N	110×1.	5
J	Α		3			3			3			3			3			3.5	
J	IB		14			14			14			14			14			19	
Fa	ase		3			$(\phi 60)$			$(\phi 63)$			$(\phi 73)$			$(\phi 76)$			$(\phi 93)$	
schluss Spannen/	-B/-C Option		G1/8			G1/8			G1/8			G1/8			G1/8			G1/4	
schluss Lösen	-J Option		SAE2			SAE2			SAE2			SAE2			SAE2			SAE4	
O-Ring	-C Option		1BP5			1BP5			1BP5			1BP5			1BP5			1BP7	
ebel Mitnehmer	bolzen (inkludiert)	φ3	×6(Ty	pB)	φ4	×8(Ty	pB)	φ4	×8(Ty	pB)	φ4	×8(Ty	p B)	φ4	×8(Ty	pB)	φ6>	< 12 (Ty	pB)
/lindervolumen	Spannen	1.2	1.2	1.3	1.8	1.9	2.0	2.9	3.1	3.3	4.4	4.7	4.9	8.1	8.6	9.0	13.0	13.9	14.7
cm ³	Lösen	3.0	3.2	3.3	4.3	4.5	4.7	6.7	7.1	7.4	10.4	11.0	11.6	17.7	18.7	19.7	28.0	29.8	31.6
Masse ^{%6}	kg		0.4			0.6			0.8			1.3			1.7			2.9	

Anmerkung %7. Masse eines Einzelschwenkspanners ohne Schwenkhebel.

Pneumatik-Serie

High-Power-

Hydraulik-Serie

Ventile/Kupplung Hvdraulikeinheit

Manuelle Produkte Zubehör

Hinweise/Sonstige

SFA SFC

hwenkspanne
LHA
LHC
LHS
LHW

LHW LT/LG TLA-2 TLB-2 TLA-1

LKA
LKC
LKW
LM/LJ
TMA-2
TMA-1

TNC
TC
Zylinder mit
Positionsabfrage
LLW

LD

Kompaktzylinder

LL

LLR

LLU

DP

DR

DS

DT

Blockzylinder

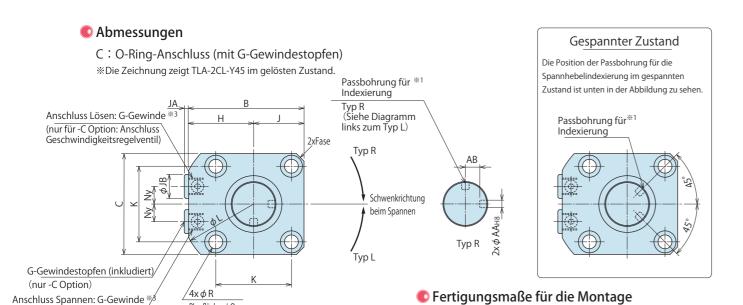
DBA

DBC

Regelventil

BZL

BZT

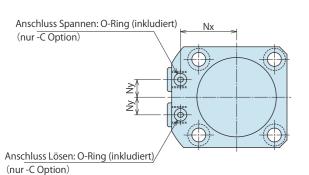

BZX/JZG

NullpunktSpannsystem

VS VT Hydraulischer Positionszylinder

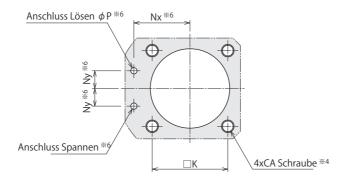
VM VJ VK Niederzug-Spannelement

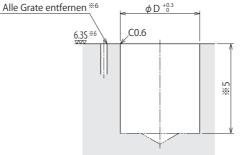
FQ
Kundenspezifischer
Federspeicherzylinde
DWA/DWB



Ф--

 $\phi D^{-0.1}_{-0.2}$

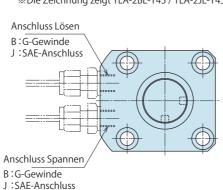

Planfläche ϕ Q


(nur für -C Option: Anschluss

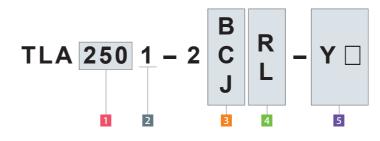
Anmerkungen

- *1. Die Position der Passbohrung für die Spannhebelindexierung im gelösten Zustand ändert sich mit dem Schwenkwinkel.
- *2. Befestigungsschrauben sind nicht im Lieferumfang enthalten. Stellen Sie Befestigungsschrauben gemäß der Einbauhöhe bereit. Siehe Abmessungen S.
- ※3. Geschwindigkeitsregelventil separat erhältlich. Sehen Sie ein solches unter Bezugnahme auf S. 727 vor.
- 1. Stellen Sie einen Schwenkhebel und Befestigungsschrauben wie auf S. 411 \sim S. 412 gezeigt bereit.

Anmerkungen


- *4. Die Gewindetiefe CA sollte so berechnet werden, dass die Befestigungsschrauben mindestens 1.5 x den Schraubendurchmesser in die Vorrichtung eingreifen.
- %5. Die Tiefe der Montagebohrung ϕ D sollte entsprechend der Abmessung F festgelegt werden.
- *6. Dieser Vorgang zeigt -C: O-Ring-Anschluss.

Anschlussmethode


B: G-Gewinde Rohrleitungsanschluss

J: SAE-Anschluss

**Die Zeichnung zeigt TLA-2BL-Y45 / TLA-2JL-Y45 im gelösten Zustand.

Modell Nr. Bezeichnung

- 1 Baugröße (Spannkraft)

- 5 Option (Wenn Y□ gewählt wird)

ntage

Mode	ell Nr.	TLA2	2501-2	□-Y	TLA4001-2 -Y				
Schwen	kwinkel	30°	45°	60°	30°	45°	60°		
Gesan	nthub	26.1	27.6	29.0	27.6	29.5	31.5		
Schwe	nkhub	10.1	11.6	13.0	11.6	13.5	15.5		
Vertik	alhub		16			16			
F	4	205.1	206.6	208	233.1	235	237		
E	3		92			114			
(<u> </u>		80			102			
[)		63			90			
E			131			148.5			
F	=		91			98.5			
F	u	114.1	115.6	117	134.6	136.5	138.5		
(3		40			50			
ŀ			52			63			
	J		40			51			
	(60			80			
	-		118			146			
	Λ		15			17			
	x		45 16			56			
	Ny					21			
)		5			5			
(-		17.5			20			
	?		11			14			
-		20.4	22.5		20.4	27.5			
		28.1	29.6	31	29.6	31.5	33.5		
- L			35.5			45			
	/	F1 1	46	F 4	F7 1	55	<i>C</i> 1		
V		51.1	52.6	54	57.1	59	61		
>	<u> </u>		23			27.5			
A			31 6 ⁺⁰	.018		39.5 8 ^{+0.}	022		
	В		11.75			14.5			
A			6.5			9			
CA (Gewinde		N	0.5 110×1.	5	M	12×1.7	75		
	A Stelgarig)	14	3.5		141	3.5			
			19			19			
	se		C6		C6				
Anschluss Spannen/	-B/-C Option		G1/4		G1/4				
Anschluss Lösen	-J Option		SAE4		SAE4				
O-Ring	-C Option		1BP7		1BP7				
	polzen (inkludiert)	φ6>	< 12 (Ty	rp B)	φ8×16(Typ B)				
Zylindervolumen	Spannen	21.4	22.6	23.8					
cm ³	Lösen	47.2	49.9	52.5	78.1	83.4	89.1		
Masse **6	kg	_				-			

%7. Masse eines Einzelschwenkspanners ohne Schwenkhebel. Anmerkung

(Formatbeispiel: TLA2501-2CR-Y30、TLA4001-2BL-Y45)

2 Konstruktionsnummer

3 Anschlussmethode

4 Schwenkrichtung beim Spannen

Zubehör

High-Power-

Pneumatik-Serie

Ventile/Kupplung

Manuelle Produkte

Hydraulikeinheit

Bohrungsspanner SFA

SFC

LHA LHC LHS LHW

> TLB-2 TLA-1

LKA LKC LKW LM/LJ TMA-2

TMA-1 Abstützelemen LD

Hebelspanner

TNC TC

Zylinder mit Positionsabfrage LLW

Kompaktzylinde LLR

LLU DP DR DS

Blockzylinder DBA DBC

DT

Regelventil BZL

BZT BZX/JZG Nullpunkt-

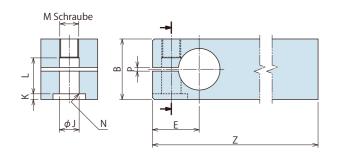
Spannsystem ٧S VT

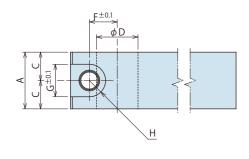
Hydraulischer

VM ٧J ٧K

Niederzug-Spannelement

FQ Kundenspezifischer


KOSMEK


Zubehör : Schwenkhebelmaterial

**Beim Design und bei der Herstellung von Schwenkhebeln sind die Montageabmessungen im Diagramm zu berücksichtigen. Die Verwendung anderer Abmessungen als in der Liste angeführt kann bei der Herstellung des Schwenkhebels zu Fehlfunktionen führen, einschließlich einer von der Spezifikation abweichenden Spannkraft, Verformungen und Beschädigungen.

Modell Nr. Bezeichnung

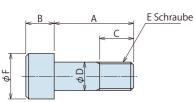
								(mm)
Modell Nr.	TLZ0400-L2	TLZ0600-L2	TLZ0800-L2	TLZ1000-L2	TLZ1600-L2	TLZ2000-L2	TLZ2500-L2	TLZ4000-L2
Entsprechendes Modell Nr.	TLA0401-2	TLA0601-2	TLA0801-2	TLA1001-2	TLA1601-2	TLA2001-2	TLA2501-2	TLA4001-2
Α	19	22	25	30	34	40	46	55
В	22	25	26	32	36	45	53	70
С	9.5	11	12.5	15	17	20	23	27.5
D	14 0 -0.016	16 0 -0.016	18 0 -0.016	22 0 -0.020	25 0 -0.020	30 0 -0.020	35.5_0	45 0 -0.025
Е	15	18	19	23	26.5	31.5	36.5	46
F	9.25	11	12	14.75	17	20	23.5	29.75
G	11	14	14	17.5	20	23	26	32
Н	5.5	7	7	8.75	10	11.5	13	16
J	6.5	8.5	8.5	10.5	12.5	14.5	16.5	21
K	2	3	3	4	4	5	7	9
L	13.5	15.5	16	18	22	26.5	31	42
М	M6×1	M8×1	M8×1	M10×1.25	M12×1.5	M14×1.5	M16×1.5	M20×2
N	C0.4	C0.6	C0.6	C0.6	C1	C1	C1	C1
Р	2	2	2	2	2	2	2	2
Z	105	120	145	160	170	175	185	220

Anmerkungen

- 1. Material: S50CH
- 2. Falls erforderlich sollte das Kopfende zusätzlich bearbeitet werden.
- 3. Eine Indexierung ist erforderlich.

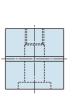
Führen Sie eine zusätzliche Bearbeitung anhand der unten angegebenen Abmessungen durch.

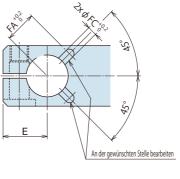

4. Die Befestigungsschraube für den Hebel wird separat angeboten.

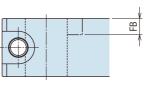

Zubehör : Befestigungsschrauben für Schnellwechselhebel

💥 Berücksichtigen Sie beim Design und bei der Herstellung der Hebelbefestigungsschraube die Abmessungen in der Abbildung und verwenden Sie Material der Festigkeitsklasse 12.9.

Modell Nr. Bezeichnung






									(mm)
	Modell Nr.	TLZ0400-LB	TLZ0600-LB	TLZ0800-LB	TLZ1000-LB	TLZ1600-LB	TLZ2000-LB	TLZ2500-LB	TLZ4000-LB
	Entsprechendes Modell Nr.	TLA0401-2	TLA0601-2	TLA0801-2	TLA1001-2	TLA1601-2	TLA2001-2	TLA2501-2	TLA4001-2
	Α	20	22	23	28	32	40	46	61
	В	6	8	8	10	12	14	16	20
5	С	7	9	10	11	13	16	18	23
	D	6	8	8	10	12	14	16	20
	Е	M6×1	M8×1	M8×1	M10×1.25	M12×1.5	M14×1.5	M16×1.5	M20×2
	F	10	13	13	16	18	21	24	30
	G	5	6	6	8	10	12	14	17

© Fertigungsmaße für die Passbohrung für Indexierung (Referenz)

※ Dieser zusätzliche Vorgang gilt für TLA□1-2.

								(mm)
Entsprechendes Hebelmodell	TLZ0400-L2	TLZ0600-L2	TLZ0800-L2	TLZ1000-L2	TLZ1600-L2	TLZ2000-L2	TLZ2500-L2	TLZ4000-L2
E	15	18	19	23	26.5	31.5	36.5	46
FA	10.5	12.5	13.5	15.5	17	21.5	24.2	31
FB	5.5	7	7	7	7.5	10	10	13.5
FC	3	4	4	4	4	6	6	8
A		M - 6 2 - 1	CEOCL					

Anmerkungen 1. Material: \$50CH

2. Wenn eine Indexierung erforderlich ist, berücksichtigen Sie die Schwenkhebel Abmessungen des jeweiligen Modells. Wenn keine Indexierung erforderlich ist, ist die Bearbeitung nicht notwendig.

High-Power-

Pneumatik-Serie

Ventile/Kupplung Hvdraulikeinheit

Manuelle Produkte Zubehör

Hinweise/Sonstiges

Bohrungsspanner

SFA

SFC

LHA LHC LHS LHW

TLB-2 TLA-1 Hebelspanner

> LKA LKC

LKW LM/LJ TMA-2 TMA-1

Abstützelemen LD

TNC TC Zylinder mit Positionsabfrage

LLW Kompaktzylinde

LLR

LLU DP DR DS DT

Blockzylinder DBA DBC

Regelventil BZL BZT BZX/JZG

Nullpunkt-Spannsystem ٧S VT

Hydraulischer

VM ٧J VK

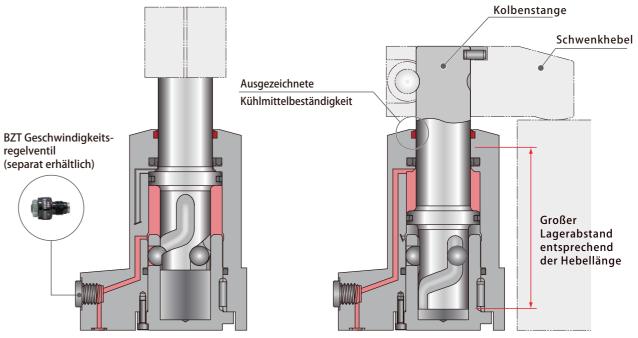
Niederzug-Spannelement FQ

Kundenspezifischer Federspeicherzylinde DWA/DWB

Hydraulisch doppelwirkender Schwenkspanner

Modell TLB-2

Hochdruck (7~35 MPa)


Flansch unten

Index

Hydraulischer Schwenkspanner Übersicht ————————————————————————————————————	5.285
Funktionsbeschreibung ————————————————————————————————————	5.414
Modell Nomenklatur ————————————————————————————————————	5.415
Spezifikationen	5.416
Leistung	
• Spannkraft —	5.417
Diagramm zulässige Schwenkzeit —	5.419
Abmessungen	
Flansch unten / Standardmodell (TLB-2)	5.421
Flansch unten / Pendelaufnahme (TLB-2-P)	5.423
Flansch unten / Langhuboption (TLB-2-Q)	5.425
• Flansch unten / Schwenkwinkel Option (TLB-2-Y)	5.427
Spannhebel Abmessungen ———————————————————————————————————	5.429
Zubehör	
Schwenkhebelmaterial für TLB	5.429
Geschwindigkeitsregelventil • Stopfen	5.727
Hinweise	
Anmerkungen zu hydraulischen Schwenkspannern ————	5.445
Hinweise (allgemein) Einbauhinweise Liste Hydraulikflüssigkeiten Hinweise zur Verwendung von hydraulischen Drosselventilen Hinweise zum Ilmgang Wartung/Inspektion Garantie	

Funktionsbeschreibung

Beim Lösen

Ausführung des Lösevorgangs durch Zufuhr von hydraulischem Druck zum Löseanschluss. Beim Spannen

Möglichkeit,

längere Hebel

Ausführung des Spannvorgangs durch Zufuhr von hydraulischem Druck zum Spannanschluss.

Möglichkeit, längere Hebel zu verwenden

Der große Lagerabstand ermöglicht die Verwendung längerer Spannhebel durch Stützung der Kolbenstange. Die Führung befindet sich zwischen dem Flansch und dem Rand der Kolbenstange. Geschwindigkeit

• Hohe Geschwindigkeit und hohe Beständigkeit durch Drehmechanismus

Durch Vergrößerung des Kolbenstangendurchmessers, die Verwendung größerer Stahlkugeln und die Ausführung der Führungsnut werden eine hohe Beständigkeit und ein geringeres Drehmoment erzielt.

• Ausgezeichnete Kühlmittelbeständigkeit

Unser spezieller Abstreifer ist zum Schutz vor Hochdruckkühlmittel konzipiert. Durch Verwendung eines Dichtungsmaterials mit ausgezeichneter chemischer Beständigkeit ist er auch äußerst beständig gegen Kühlmittel auf Chlorbasis.

• Direkte Anschlussmöglichkeit eines Geschwindigkeitsregelventils

Bei einem O-Ring-Anschluss (-C Option) ist es möglich, ein BZT Geschwindigkeitsregelventil mit Be-/Entlüftungsfunktion anzuschließen. (Geschwindigkeitsregelventil separat erhältlich.)

High-Power-

Ventile/Kupplung

Pneumatik-Serie

Hydraulikeinheit

Bohrungsspanne

SFC

LHA LHC LHS LHW TLA-2

TLA-1

Hebelspanner LKA

LKC LKW LM/LJ TMA-2 TMA-1

LD

LC TNC TC

Zylinder mit Positionsabfrage LLW

Kompaktzylinde

LLR LLU DP DR

DS DT Blockzylinder

DBA DBC

Regelventil BZL

BZT BZX/JZG

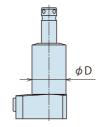
Spannsystem ٧S VT

Hydraulischer

VM ٧J ٧K

FQ Kundenspezifischer DWA/DWB

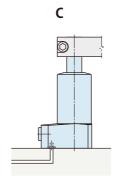
413

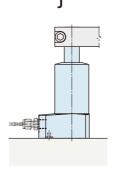

KOSMEK

Modell Nr. Bezeichnung

1 Baugröße (Spannkraft)

040: φD=32mm **160**: φD=53mm **060** : φ D=36mm **200**: φD=63.5mm **080** ∶ ϕ D=39mm **250** : φD=71mm **100**: φD=46.5mm **400**: φD=90mm st Außendurchmesser (ϕ D) des Zylinders.


2 Konstruktionsnummer


1 : Revisionsnummer

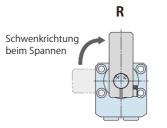
3 Anschlussmethode

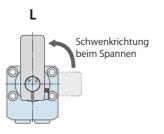
C: O-Ring-Anschluss (mit G-Gewindestopfen) **J** : SAE-Anschluss (ohne O-Ring-Anschluss)

※ Geschwindigkeitsregelventil (BZT) separat erhältlich. Siehe S. 727.

O-Ring-Anschluss Mit G-Gewindestopfen

Anschlussmöglichkeit eines


Geschwindigkeitsregelventils


SAE-Anschluss SAE-Anschluss Kein O-Ring-Anschluss

4 Schwenkrichtung beim Spannen

L : gegen den Uhrzeigersinn

R: im Uhrzeigersinn

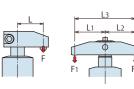
5 Option

: Ohne (Standard: Schnellwechseloption) Leer

 $(Y30:30^{\circ}/Y45:45^{\circ}/Y60:60^{\circ})$

: Pendelaufnahme Q : Langhuboption $Y \square$: Schwenkwinkel Option

Spezifikationen


Modell Nr.			TLB	0401-2	- -	TLB	0601-2	□-□	TLB	0801-2]	TLE	31001-2□]	
Kolbenfläche		cm ²		1.005			1.453			1.979			2.804		
Spannkraft	5 Leer/Q/Y□ gewählt		F= -10	P).94+0.0	36×L	F=	P 7.57+0.02	4×L	F= -5.	P .53+0.01	47×L	F= -3	P .91+0.00	94×L	
$\begin{array}{c} (Berechnungsformel) \# 1 \\ & \textbf{kN} \end{array}$	5 P gewählt		,	/L3)×0.1 /L3)×0.1		,	2/L3)×0.1 /L3)×0.1			2/L3)×0.1 /L3)×0.1		,	2/L3)×0. 1/L3)×0.		
	Gesamthub	mm	14			15			18				19.5		
	Schwenkhub (90°)	mm		6			7		8				9.5		
5 Leer/P	Vertikalhub	mm	8 8 10 10												
gewählt	Schwenkwinkel Gena	uigkeit		90° ±3°											
	Schwenkwinkel Wiederholgen	auigkeit						±0	.5°						
	Gesamthub	mm		22			23			28			29.5		
	Schwenkhub (90°)	mm		6			7			8					
5 Q gewählt	Vertikalhub	mm		16			16			20			20		
	Schwenkwinkel Gena	uigkeit						90° :	±3°						
	Schwenkwinkel Wiederholgen	auigkeit		±0.5°											
	Option		Y30	Y45	Y60	Y30	Y45	Y60	Y30	Y45	Y60	Y30	Y45	Y60	
	Gesamthub	mm	11.7	12.3	12.9	12.2	12.9	13.6	14.9	15.7	16.5	15.7	16.7	17.6	
5 Y□ gewählt	Schwenkhub (90°)	mm	3.7	4.3	4.9	4.2	4.9	5.6	4.9	5.7	6.5	5.7	6.7	7.6	
J I gewant	Vertikalhub	mm	8	8	8	8	8	8	10	10	10	10	10	10	
	Schwenkwinkel Gena	uigkeit	30° ±3°	45° ±3°	60° ±3°	30° ±3°	45° ±3°	60° ±3°	30° ±3°	45° ±3°	60° ±3°	30° ±3°	45° ±3°	60° ±3°	
	Schwenkwinkel Wiederholgen	auigkeit						±0	.5°						
Max. Betriebsdr	lax. Betriebsdruck M			Pa 35.0											
Min. Betriebsdru	lin. Betriebsdruck **2 M			7.0											
Prüfdruck					a 42.0										
Betriebstemper	℃	0~70													
Medium	Medium				Standard-Hydrauliköl nach ISO-VG-32										

Modell Nr.	benfläche			31601-2□	I - -	TLE	2001-2	I - -	TLB	2501-2	I - -	TLE	34001-2□	 -		
Kolbenfläche		cm ²		4.170			6.134			8.198			12.37			
Spannkraft	5 Keine Markierung/Q/ Y□ gewählt		F= -2.	P .59+0.00	46×L	F=	P 1.76+0.00	028×L	F= -1.	P 32+0.00	18×L	F= -(P).87+0.00)11×L		
(Berechnungsformel)**1	5 P gewählt		,	2/L3)×0.4		,	2/L3)×0.6			/L3)×0.8		,	.2/L3)×1.			
kN	_ ,		F2= (L1	ı/L3)×0.4	117×P	F2= (L1	/L3)×0.6	513×P	F2= (L1	/L3)×0.8	320×P	F2= (L	.1/L3)×1.	237×P		
	Gesamthub	mm		24			26.5			32			35.5			
	Schwenkhub (90°)	mm		11			13.5			16			19.5			
5 Leer/P	Vertikalhub	mm		13			13			16			16			
gewählt	Schwenkwinkel Genau	igkeit						90° :	±3°							
	Schwenkwinkel Wiederholgena	uigkeit						±0	.5°							
	Gesamthub	mm		36			38.5			48			51.5			
	Schwenkhub (90°)	mm		11			13.5			16			19.5			
5 Q gewählt	Vertikalhub	mm		25			25			32			32			
	Schwenkwinkel Genau	igkeit						90° :	±3°							
	Schwenkwinkel Wiederholgena	uigkeit						±0	.5°							
	Option		Y30	Y45	Y60	Y30	Y45	Y60	Y30	Y45	Y60	Y30	Y45	Y60		
	Gesamthub	mm	19.5	20.6	21.7	21.2	22.6	23.9	26.1	27.6	29.0	27.6	29.5	31.5		
5 Y□ gewählt	Schwenkhub (90°)	mm	6.5	7.6	8.7	8.2	9.6	10.9	10.1	11.6	13.0	11.6	13.5	15.5		
o i □ gewaiiit	Vertikalhub	mm	13	13	13	13	13	13	16	16	16	16	16	16		
	Schwenkwinkel Genau	igkeit	30° ±3°	45° ±3°	60° ±3°	30° ±3°	45° ±3°	60° ±3°	30° ±3°	45° ±3°	60° ±3°	30° ±3°	45° ±3°	60° ±3°		
	Schwenkwinkel Wiederholgena	uigkeit						±0	.5°							
Max. Betriebsdru	ıck	MPa						35	5.0							
Min. Betriebsdru	ck **2	MPa						7	.0							
Prüfdruck		MPa						42	2.0							
Betriebstempera	ntur	°C						0 ~	- 70							
Medium						S	tandard-	Hydrauli	köl nach	ISO-VG-	32					

Anmerkungen *1. F, F1, F2: Spannkraft (kN) P: Hydraulischer Versorgungsdruck (MPa) L, L1, L2: Distanz zwischen Kolben und Spannpunkt (mm) L3:(mm).

> **※**2. Minimaldruck, um den Spanner ohne Last zu betreiben.

Siehe Abmessungen, wenn Sie Informationen zur Masse und zum Zylindervolumen benötigen.

High-Power-

Pneumatik-Serie

Ventile/Kupplung Hydraulikeinheit

Manuelle Produkte Zubehör

Bohrungsspanne SFA SFC

> LHA LHC LHS LHW TLA-2 TLA-1

Hebelspanner LKA LKC LKW LM/LJ TMA-2 TMA-1

Abstützelement LD TNC TC Zylinder mit Positionsabfrage

Kompaktzylinder LLR LLU DP DR DS

LLW

DT Blockzylinder DBA DBC Regelventil

BZL BZT BZX/JZG Nullpunkt-Spannsystem

٧S VT Hydraulischer

VM ٧J VK Niederzug-Spannelement

FP

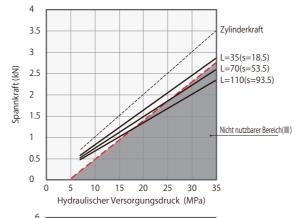
FQ Kundenspezifischer Federspeicherzylinde DWA/DWB

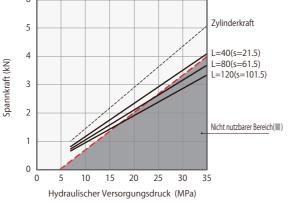
10

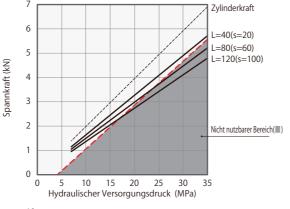
Spannkraftverlauf

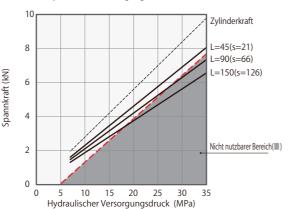
P: Hydraulischer Druck (MPa) ➡

※ TLB □ 1-2□-P: Bei der Pendelaufnahme weicht der Spannkraftverlauf vom Diagramm ab. Berechnen Sie den Verlauf mit der Formel für die Spezifikation.


(Beispiel) Bei Verwendung von TLB1601-2 Hydraulischer Versorgungsdruck 25.0 MPa, Hebellänge L=50 mm, Spannkraft ca. 8.9 kN.


TLB040)1-2 Spannkr	aft Berechnu	ngsformel *	^{{1} (k	N) F:	= P /	(10.9	94 + 0	.036>	(L)	
Hydraulischer	Zylinderkraft	t		Spannkı	raft (kN)	Nicht nu	ıtzbarer Be	ereich(III)	Max. Hebel	
Druck	(kN)		Hebellänge L (mm)								
(MPa)		L=35	L=40	L=50	L=60	L=70	L=80	L=90	L=110	(mm)	
35	3.52	2.9	2.9							48	
32.5	3.27	2.7	2.7	2.6						52	
30	3.02	2.5	2.5	2.4						57	
27.5	2.77	2.3	2.3	2.2	2.1					63	
25	2.52	2.1	2.1	2.0	2.0	1.9				71	
22.5	2.27	1.9	1.9	1.8	1.8	1.7	1.7			81	
20	2.01	1.7	1.7	1.6	1.6	1.5	1.5	1.5		95	
17.5	1.76	1.5	1.5	1.4	1.4	1.4	1.3	1.3	1.2	113	
15	1.51	1.3	1.3	1.2	1.2	1.2	1.1	1.1	1.1	141	
12.5	1.26	1.1	1.1	1.0	1.0	1.0	1.0	0.9	0.9	150	
10	1.01	0.9	0.9	0.8	0.8	0.8	0.8	0.8	0.7	150	
7	0.71	0.6	0.6	0.6	0.6	0.6	0.6	0.5	0.5	150	
Max. Betriel	osdruck (MPa)	35.0	35.0	33.6	28.8	25.4	22.8	20.8	17.9		


TLB060	01-2 Spannkr	aft Berechnur	ngsformel *	^{{1} (k	N) F:	= P /	(7.57	7 + 0.0)24×	L)
Hydraulischer	Zylinderkraf	:		Spannk	raft (kN)	Nicht nu	ıtzbarer Be	ereich(Max. Hebel
Druck	(kN)			He	ebellän	ge L (mi	m)			länge (L)
(MPa)		L=40	L=50	L=60	L=70	L=80	L=90	L=100	L=120	(mm)
35	5.09	4.2								49
32.5	4.73	3.9	3.8							54
30	4.36	3.6	3.5							59
27.5	4.00	3.3	3.2	3.1						66
25	3.64	3.0	2.9	2.8	2.8					74
22.5	3.27	2.7	2.6	2.5	2.5	2.4				84
20	2.91	2.4	2.3	2.3	2.2	2.2	2.1			98
17.5	2.55	2.1	2.0	2.0	1.9	1.9	1.8	1.8		117
15	2.18	1.8	1.8	1.7	1.7	1.6	1.6	1.6	1.5	145
12.5	1.82	1.5	1.5	1.4	1.4	1.4	1.3	1.3	1.2	192
10	1.46	1.2	1.2	1.2	1.1	1.1	1.1	1.1	1.0	200
7	1.02	0.9	0.8	0.8	0.8	0.8	0.8	0.8	0.7	200
Max. Betriel	osdruck (MPa)	35.0	34.6	29.6	26.0	23.4	21.3	19.6	17.2	

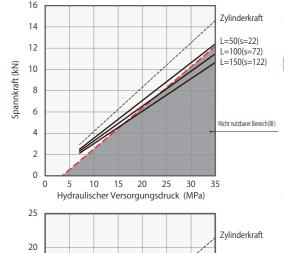

TLB0801-2 Spannkraft Berechnungsformel **1 (kN) $F = P / (5.53 + 0.0147 \times L)$											
Hydraulischer	Zylinderkraft			Spannk	raft (kN)	Nicht nu	ıtzbarer Be	ereich(III)	Max. Hebel	
Druck	(kN)			He	ebellän	ge L (mi	m)			länge (L)	
(MPa)		L=40	L=50	L=60	L=70	L=80	L=90	L=100	L=120	(mm)	
35	6.93	5.8	5.6							50	
32.5	6.44	5.4	5.2							55	
30	5.94	5.0	4.8	4.7						60	
27.5	5.45	4.5	4.4	4.3						66	
25	4.95	4.1	4.0	3.9	3.9					74	
22.5	4.46	3.7	3.6	3.6	3.5	3.4				84	
20	3.96	3.3	3.2	3.2	3.1	3.0	3.0			98	
17.5	3.47	2.9	2.8	2.8	2.7	2.7	2.6	2.5		116	
15	2.97	2.5	2.4	2.4	2.3	2.3	2.2	2.2	2.1	143	
12.5	2.48	2.1	2.0	2.0	2.0	1.9	1.9	1.8	1.8	185	
10	1.98	1.7	1.6	1.6	1.6	1.5	1.5	1.5	1.4	230	
7	1.39	1.2	1.2	1.1	1.1	1.1	1.1	1.0	1.0	230	
Max. Betrieb	osdruck (MPa)	35.0	35.0	30.0	26.3	23.5	21.4	19.6	17.1		

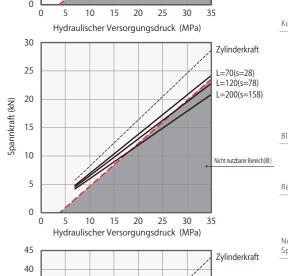
TLB100)1-2	Spannkra	ft Berechnur	igsformel *	1 (k	N) F :	= P /	(3.91	+ 0.0	094>	<l)< td=""></l)<>
Hydraulischer	Zylino	derkraft			Spannk	raft (kN)	Nicht nu	ıtzbarer Be	ereich(Max. Hebel
Druck	(k	N)			He	ebelläng	ge L (m	m)			länge (L)
(MPa)			L=45	L=50	L=60	L=70	L=90	L=110	L=130	L=150	(mm)
35	9	.82	8.1	8.0	7.9						66
32.5	9	.12	7.6	7.5	7.3	7.2					72
30	8	.42	7.0	6.9	6.8	6.6					80
27.5	7	.72	6.4	6.3	6.2	6.1					88
25	7	.01	5.8	5.8	5.6	5.5	5.3				99
22.5	6	.31	5.2	5.2	5.1	5.0	4.8	4.6			113
20	5	.61	4.7	4.6	4.5	4.4	4.3	4.1	3.9		132
17.5	4	.91	4.1	4.0	4.0	3.9	3.7	3.6	3.5	3.3	158
15	4	.21	3.5	3.5	3.4	3.3	3.2	3.1	3.0	2.9	197
12.5	3	.51	2.9	2.9	2.8	2.8	2.7	2.6	2.5	2.4	250
10	2	.81	2.4	2.3	2.3	2.2	2.2	2.1	2.0	1.9	250
7	1	.97	1.7	1.6	1.6	1.6	1.5	1.5	1.4	1.4	250
Max Betrie	bsdruck (MPa)	35.0	35.0	35.0	33.4	27.1	23.0	20.2	18.2	

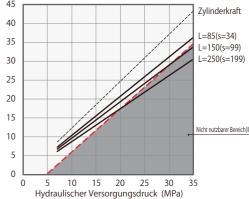
Anmerkungen

- 1. Die Tabellen und Diagramme zeigen die Wechselwirkungen von Spannkraft (kN) und hydraulischem Versorgungsdruck (MPa).
- 2. Die Zylinderkraft (wenn L=0) kann nicht aus der Berechnungsformel für die Spannkraft abgeleitet werden.

Leistung


- 3. Es kann vorkommen, dass es bei großer Trägheit je nach hydraulischem Versorgungsdruck oder Schwenkhebelmontageposition keine Schwenkhebelfunktion gibt.
- 4. Die angeführten Spannkräfte beziehen sich auf die Spannposition.
- 5. Die Spannkraft variiert je nach Spannhebellänge. Zulässigen hydraulischen Versorgungsdruck je nach Spannhebellänge beachten.
- 6. Ein Betrieb im nicht nutzbaren Bereich kann zu Schäden am Spannelement und Flüssigkeitsaustritt führen.
- 7. Die Tabellen und Diagramme dienen nur als Referenz. Die genauen Werte sind auf Basis der Formel in der Spezifikationentabelle zu berechnen.
- ※1. F: Spannkraft (kN), P: Hydraulischer Versorgungsdruck (MPa), L: Hebellänge (mm).


TLB160	TLB1601-2 Spannkraft Berechnungsformel $\stackrel{**}{=}$ (kN) $F = P / (2.59 + 0.0046 \times L)$											
Hydraulischer	Zylind	erkraft			Spannk	raft (kN)	Nicht nu	tzbarer Be	ereich(Max. Hebel-	
Druck	(kN	1)			He	ebellän	ge L (m	m)			länge (L)	
(MPa)			L=50	L=60	L=70	L=80	L=90	L=100	L=120	L=150	(mm)	
35	14.	60	12.5	12.3							62	
32.5	13	56	11.6	11.4							67	
30	12.	51	10.7	10.5	10.4						73	
27.5	11.4	47	9.8	9.6	9.5	9.3					81	
25	10.4	43	8.9	8.8	8.6	8.5	8.4				90	
22.5	9.	39	8.0	7.9	7.8	7.7	7.5	7.4			102	
20	8.	34	7.1	7.0	6.9	6.8	6.7	6.6			118	
17.5	7.	30	6.3	6.2	6.1	6.0	5.9	5.8	5.6		139	
15	6.	26	5.4	5.3	5.2	5.1	5.0	5.0	4.8	4.6	169	
12.5	5	22	4.5	4.4	4.3	4.3	4.2	4.1	4.0	3.9	215	
10	4.	17	3.6	3.5	3.5	3.4	3.4	3.3	3.2	3.1	250	
7	2.9	92	2.5	2.5	2.5	2.4	2.4	2.3	2.3	2.2	250	
Max. Betriel	bsdruck (N	1Pa)	35.0	35.0	31.3	27.8	25.1	22.9	19.7	16.4		


TLB2001-2 Spannkraft Berechnungsformel 181 (kN) $F = P / (1.76 + 0.0028 \times L)$												
Hydraulischer	Zylinderkraft		Spannkraft (kN) Nicht nutzbarer Bereich(■)									
Druck	(kN)		Hebellänge L (mm)									
(MPa)		L=60	7							(mm)		
35	21.47	18.2	17.9							73		
32.5	19.94	16.9	16.7							79		
30	18.41	15.6	15.4	15.2						87		
27.5	16.87	14.3	14.1	13.9						96		
25	15.34	13.0	12.8	12.7	12.3					107		
22.5	13.81	11.7	11.6	11.4	11.1	10.8				121		
20	12.27	10.4	10.3	10.1	9.9	9.6	9.3			140		
17.5	10.74	9.1	9.0	8.9	8.6	8.4	8.2	8.0		165		
15	9.21	7.8	7.7	7.6	7.4	7.2	7.0	6.8	6.7	201		
12.5	7.67	6.5	6.4	6.4	6.2	6.0	5.9	5.7	5.6	258		
10	6.14	5.2	5.2	5.1	5.0	4.8	4.7	4.6	4.5	280		
7	4.30	3.7	3.6	3.6	3.5	3.4	3.3	3.2	3.1	280		
Max. Betriel	osdruck (MPa)	35.0	35.0	32.2	26.5	22.7	20.0	17.9	16.3			

TLB2501-2 Spannkraft Berechnungsformel 18 (kN) $F = P / (1.32 + 0.0018 \times L)$											
Hydraulischer	Zylinderkraft			Spannk	raft (kN)	Nicht nu	ıtzbarer Be	ereich(III)	Max. Hebel-	
Druck	(kN)		Hebellänge L (mm)							länge (L)	
(MPa)		L=70	L=80	L=90	L=100	L=120	L=140	L=160	L=200	(mm)	
35	28.70	24.3	24.0	23.7						91	
32.5	26.65	22.5	22.2	22.0						99	
30	24.60	20.8	20.5	20.3	20.0					109	
27.5	22.55	19.1	18.8	18.6	18.4	18.0				120	
25	20.50	17.3	17.1	16.9	16.7	16.3				134	
22.5	18.45	15.6	15.4	15.2	15.0	14.7	14.4			153	
20	16.40	13.9	13.7	13.5	13.4	13.1	12.8	12.5		176	
17.5	14.35	12.2	12.0	11.9	11.7	11.4	11.2	10.9	10.5	208	
15	12.30	10.4	10.3	10.2	10.0	9.8	9.6	9.4	9.0	255	
12.5	10.25	8.7	8.6	8.5	8.4	8.2	8.0	7.8	7.5	300	
10	8.20	7.0	6.9	6.8	6.7	6.6	6.4	6.3	6.0	300	
7	5.74	4.9	4.8	4.8	4.7	4.6	4.5	4.4	4.2	300	
Max. Betrie	osdruck (MPa)	35.0	35.0	35.0	32.3	27.5	24.2	21.6	18.1		

TLB400	TLB4001-2 Spannkraft Berechnungsformel 18 (kN) $F = P / (0.87 + 0.0011 \times L)$										
Hydraulischer	Zylinderkraft		Spannkraft (kN) Nicht nutzbarer Bereich(■) M								
Druck	(kN)					ge L (mr				länge (L)	
(MPa)		L=85	L=100	L=125	L=150	L=175	L=200	L=225	L=250	(mm)	
35	43.30	36.4	35.8	34.8						126	
32.5	40.21	33.8	33.2	32.3						138	
30	37.11	31.2	30.7	29.8	29.0					151	
27.5	34.02	28.6	28.1	27.3	26.6					168	
25	30.93	26.0	25.6	24.9	24.2	23.6				189	
22.5	27.84	23.4	23.0	22.4	21.8	21.2	20.7			216	
20	24.74	20.8	20.5	19.9	19.4	18.9	18.4	17.9	17.5	251	
17.5	21.65	18.2	17.9	17.4	17.0	16.5	16.1	15.7	15.3	301	
15	18.56	15.6	15.4	14.9	14.5	14.2	13.8	13.5	13.2	350	
12.5	15.47	13.0	12.8	12.5	12.1	11.8	11.5	11.2	11.0	350	
10	12.37	10.4	10.3	10.0	9.7	9.5	9.2	9.0	8.8	350	
7	8.66	7.3	7.2	7.0	6.8	6.6	6.5	6.3	6.2	350	
Max. Betrie	bsdruck (MPa)	35.0	35.0	35.0	30.2	26.6	23.9	21.8	20.1		

High-Power-

Pneumatik-Serie

Ventile/Kupplung Hvdraulikeinheit

Manuelle Produkte

Zubehör

Hinweise/Sonstiges

Bohrungsspanne SFA SFC

LHA LHC LHS LHW LT/LG

TLA-2 TLA-1 Hebelspanner

LKA LKC LKW LM/LJ TMA-2 TMA-1

L=120(s=87.5) L=180(s=147.5)

LD TNC TC Zylinder mit Positionsabfrage

LLW Kompaktzylinde

> LLR LLU DP DR DS DT

Blockzylinde DBA DBC Regelventil

BZL BZT BZX/JZG Spannsystem

٧S VT Hydraulischer

VM ٧J VK

Niederzug-Spannelemen FQ

Kundenspezifischer DWA/DWB

Modell

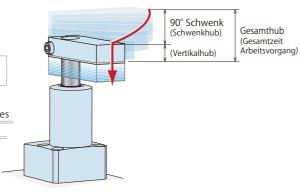
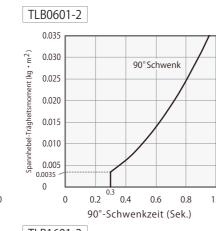
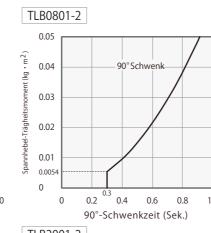
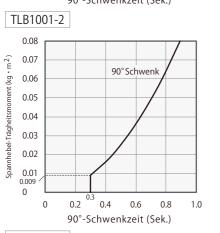
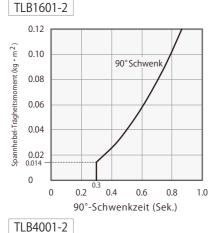

KOSMEK Harmony in Innovation

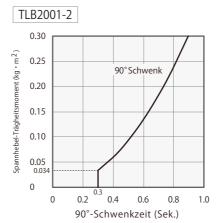
Diagramm zulässige Schwenkzeit

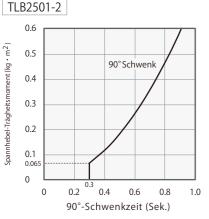

Einstellung der Schwenkzeit

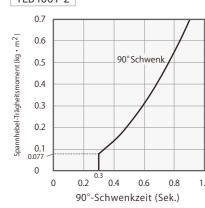

Das Diagramm zeigt die zulässige Schwenkzeit im Vergleich zum Trägheitsmoment des Hebels. Stellen Sie sicher, dass die Dauer des Arbeitsvorgangs länger als die im Diagramm dargestellte Zeit ist.


Eine zu hohe Funktionsgeschwindigkeit kann die Positionsgenauigkeit verringern und innenliegende Teile beschädigen.



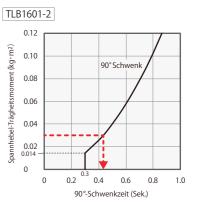

TLB0401-2 0.016 0.014 90°Schwenl 0.012 0.010 0.008 0.006 0.004 0.002 0.3 0.2 0.6 0.8 0 90°-Schwenkzeit (Sek.)





Anmerkungen

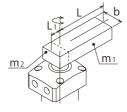
- 1. Das Diagramm zeigt das Verhältnis der 90°-Schwenkzeit zum Trägheitsmoment des Hebels.
- 2. Die Gesamtzeit des Schwenkhubs entspricht etwa 2 bis 2,5 Mal der 90°-Schwenkzeit.
- 3. Es kann vorkommen, dass es bei großer Trägheit je nach hydraulischem Versorgungsdruck, Durchfluss und Schwenkhebelmontageposition keine Schwenkhebelfunktion gibt.
- 4. Stellen Sie die Schwenkzeit mindestens auf die in den Diagrammen für das Trägheitsmoment angegebenen Werte ein.
- 5. Eine zu hohe Geschwindigkeit kann zu einer Verschlechterung der Winkelgenauigkeit und Schäden an innenliegenden Teilen führen.
- 6. Die Spannkraft variiert je nach Spannhebellänge. Wählen Sie den passenden Betriebsdruck aus dem angegebenen Spannkraftbereich.
- 7. Bei horizontaler Montage des Spanners kann es vorkommen, dass der Hebel durch sein eigenes Gewicht die Schwenkgeschwindigkeit auf einen Wert über das erlaubte Maß hinaus erhöht. Fügen Sie in diesem Fall ein Geschwindigkeitsregelventil in den Zulauf ein.
- 8. Die Lösezeit sollte mindestens 0.3 Sekunden betragen.
- 9. Kontaktieren Sie uns, wenn die Betriebsbedingungen von den in den Diagrammen abgebildeten abweichen.


(Interpretation des Diagramms der zulässigen Schwenkzeit) Bei Verwendung von TLB1601-2

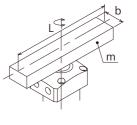
Trägheitsmoment des Spannhebels: 0.03kg·m²

• 90°-Schwenkzeit : Ungefähr 0.43 Sek. oder länger

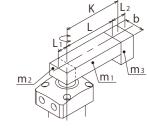
• Gesamtzeit Arbeitsvorgang : Ungefähr 0.95 Sek. oder länger


Die Gesamtzeit im Diagramm bildet die zulässige Zeit des
 Arbeitsvorganges im Gesamthub ab.
 (Schwenkhub: 11 mm, Gesamthub: 24 mm)

 $Be rechnung\ des\ Tr\"{a}ghe its moments\ (gesch\"{a}tzt)$


 $I: Tr\"{a}gheits moment \ (kg \cdot m^2) \ L, L_1, L_2, K, b: L\"{a}nge \ (m) \\ m, m_1, m_2, m_3: Masse \ (kg)$

① Bei einer rechteckigen Platte (Quader) ist die Welle vertikal auf einer Seite der Platte.



$$I = m_1 \frac{4L^2 + b^2}{12} + m_2 \frac{4L_1^2 + b^2}{12}$$

② Bei einer rechteckigen Platte (Quader) ist die Welle vertikal zum Schwerpunkt der Platte.

③ Die Last wird am Kopfende des Hebels aufgebracht.

$$I = m_1 \frac{4L^2 + b^2}{12} + m_2 \frac{4L_1^2 + b^2}{12} + m_3 K^2 + m_3 \frac{L_2^2 + b^2}{12}$$

Berechnungsformel für die Gesamtzeit des Arbeitsvorganges

Gesamtzeit des Arbeitsvorganges (Sek.) = 90° -Schwenkzeit (Sek.) $\times \frac{G}{S}$

× Gesamthub (mm)
Schwenkhub (mm)

Pneumatik-Serie

Hydraulik-Serie

High-Power

Ventile/Kupplung Hydraulikeinheit

Manuelle Produkte Zubehör

Hinweise/Sonstiges

Bohrungsspanner

SFA

SFC

Schwenkspanno LHA LHC

LHS
LHW
LT/LG
TLA-2
TLB-2

TLA-1
Hebelspanner

LKA
LKC
LKW
LM/LJ
TMA-2
TMA-1

Abstützelement

LD

LC

TNC

TC
Zylinder mit
Positionsabfrage
LLW

Kompaktzylinder LL

LLR
LLU
DP
DR
DS
DT

Blockzylinder DBA

Regelventil BZL

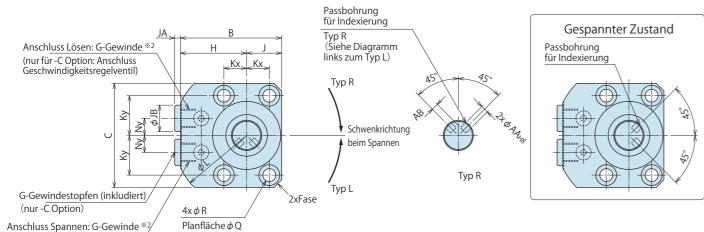
BZT BZX/JZG Nullpunkt-Spannsystem

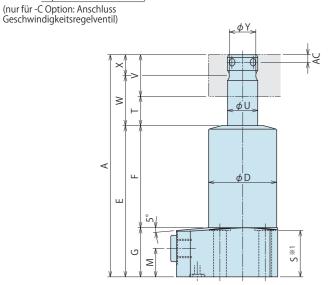
VS VT

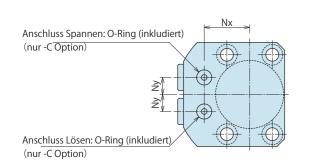
Hydraulischer Positionszylinder VL

VM VJ VK

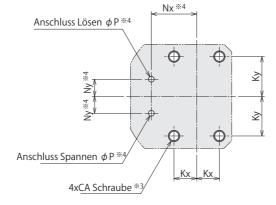
Niederzug-Spannelement FP FQ


> Kundenspezifischer Federspeicherzylinde DWA/DWB


419


Abmessungen

C: O-Ring-Anschluss (mit G-Gewindestopfen)


*Die Zeichnung zeigt TLB-2CL im gelösten Zustand.

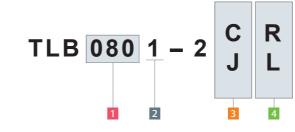
C Fertigungsmaße für die Montage

Anmerkungen

- *3. Die Gewindetiefe CA sollte so berechnet werden, dass die Befestigungsschrauben mindestens 1.5 x den Schraubendurchmesser in die Vorrichtung eingreifen.
- ※4. Dieser Vorgang zeigt -C: O-Ring-Anschluss. Die Rauheit der Montagefläche (O-Ring-Fläche) sollte

Anschlussmethode

J: SAE-Anschluss


*Die Zeichnung zeigt TLB-2JL im gelösten Zustand.

Anmerkungen

- *1. Befestigungsschrauben sind nicht im Lieferumfang enthalten. Diese sind vom Kunden basierend auf den Abmessungen "S " bereitzustellen.
- ※2. Geschwindigkeitsregelventil separat erhältlich. Sehen Sie ein solches unter Bezugnahme auf S. 727 vor.
- 1. Stellen Sie einen Schwenkhebel und Befestigungsschrauben wie auf S. 429 und S. 430 gezeigt bereit.

Modell Nr. Bezeichnung

(Formatbeispiel: TLB0801-2CR, TLB4001-2JL)

4 Schwenkrichtung beim Spannen

5 Option (Nicht verfügbar)

Abmessungen und Fertigungsmaße für die Montage

Mode	ell Nr.	TLB0401-2	TLB0601-2	TLB0801-2	TLB1001-2	TLB1601-2	TLB2001-2	TLB2501-2	(mm
	mthub	14	15	18	19.5	24	26.5	32	35.5
	hub (90°)	6	7	8	9.5	11	13.5	16	19.5
	kalhub	8	8	10	10	13	13	16	16
	A	97.5	105	119	134.5	159.5	180	211	241
	В	49.5	53.5	56.5	64	71.5	84.5	99.5	118
(C	47	55	57	70	71	90	84	102
[D	32	36	39	46.5	53	63.5	71	90
	E	62.5	66	74	83	99.5	111.5	131	148.5
	F	36.5	40	48	57	72.5	81.5	101	112.5
(G	26	26	26	26	27	30	30	36
ŀ	Н	33	35	36.5	40	43.5	52	57.5	67
	J	16.5	18.5	20	24	28	32.5	42	51
K	(χ	11	12	13.5	16	20	22.5	32	40
K	(у	18	21	22	27	27.5	35	32	40
	L L	76	78	83	93	98	118	132	148
N	M	15	15	15	15	16	16.5	16.5	22.5
N	٧x	22	24	25.5	29	32.5	38	43.5	53
N	ly	9	9	10	12	14	17	19	20
-	P	3	3	3	3	3	5	5	5
(Q	9	11	11	14	14	17.5	17.5	20
	R	5.5	6.8	6.8	9	9	11	11	14
	S	24	24	24	24	25	28	28	33
-	Т	16	17	20	21.5	26	28.5	34	37.5
l	U	14	16	18	22	25	30	35.5	45
1	V	19	22	25	30	34	40	46	55
\	N	25.5	28	32.5	36.5	43	48.5	57	65
)	X	9.5	11	12.5	15	17	20	23	27.5
,	Υ	12.5	14	16	19.5	22	26	31	39.5
A	λA	3 +0.014	4 +0.018	4 +0.018	4 +0.018	4 +0.018	6 ^{+0.018}	6 +0.018	8 +0.022
A	ΛB	4	4	5	7	8.5	9	11.75	14.5
A	\C	3.5	4.5	4.5	4.5	5	6.5	6.5	9
CA (Gewinde	× Steigung)	M5×0.8	M6×1	M6×1	M8×1.25	M8×1.25	M10×1.5	M10×1.5	M12×1.75
J	Α	3	3	3	3	3	3.5	3.5	3.5
J	IB	14	14	14	14	14	19	19	19
Fa	ase	3	4	4	4	4	5	6	6
Anschluss Spannen/	-C Option	G1/8	G1/8	G1/8	G1/8	G1/8	G1/4	G1/4	G1/4
Anschluss Lösen	·		SAE2	SAE2	SAE2	SAE2	SAE4	SAE4	SAE4
D-Ring	-C Option	1BP5	1BP5	1BP5	1BP5	1BP5	1BP7	1BP7	1BP7
	bolzen (inkludiert)	φ3×6 (Klasse B)	φ4×8 (Klasse B)	φ4×8 (Klasse B)	φ4×8 (Klasse B)	φ4×8 (Klasse B)	φ6×12 (Klasse B)	φ6×12 (Klasse B)	
Zylindervolumen	Spannen	1.4	2.2	3.6	5.5	10.0	16.3	26.2	43.9
cm ³	Lösen	3.6	5.2	8.1	12.9	21.8	35.0	57.9	100.4
Masse **6	kg	0.6	0.8	1.1	1.6	2.7	3.5	5.5	8.1

*5. Masse eines Einzelschwenkspanners einschließlich Konushülse und Mutter.

1 Baugröße (Spannkraft)

2 Konstruktionsnummer

3 Anschlussmethode

Pneumatik-Serie

High-Power-

Ventile/Kupplung Hydraulikeinheit

Manuelle Produkte Zubehör

Hinweise/Sonstiges

Bohrungsspanner

SFA

SFC LHA

LHC LHS LHW LT/LG TLA-2 TLA-1

Hebelspanner LKA LKC LKW LM/LJ TMA-2 TMA-1

LD TNC TC Zylinder mit Positionsabfrage

Abstützelemen

LLW Kompaktzylinde LLR LLU DP

DS DT Blockzylinder DBA

DR

DBC Regelventil BZL BZT BZX/JZG Nullpunkt-

Spannsystem ٧S VT Hydraulischer

> VM ٧J ٧K

Niederzug-Spannelement

FQ

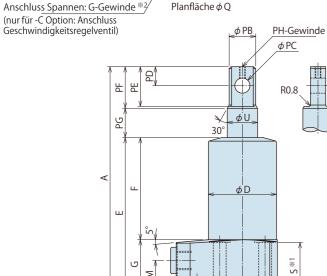
Kundenspezifischer DWA/DWB

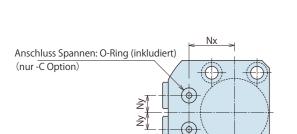
High-Power-

Pneumatik-Serie

Ventile/Kupplung

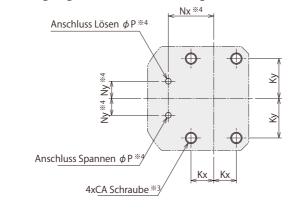
Hydraulikeinheit


Zubehör


Manuelle Produkte

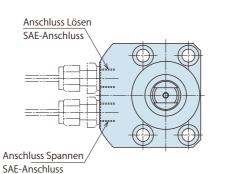
Abmessungen

C: O-Ring-Anschluss (mit G-Gewindestopfen) **Die Zeichnung zeigt TLB-2C□-P im gelösten Zustand.



C Fertigungsmaße für die Montage

Pendelspannhebel Bezugsmaße

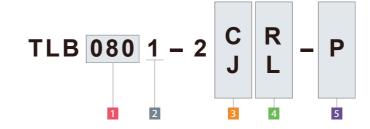

Anmerkungen

- *3. Die Gewindetiefe CA sollte so berechnet werden, dass die Befestigungsschrauben mindestens 1.5 x den Schraubendurchmesser in die Vorrichtung eingreifen.
- ¾4. Dieser Vorgang zeigt -C: O-Ring-Anschluss. Die Rauheit der Montagefläche (O-Ring-Fläche) sollte 6.35 oder weniger betragen.

Anschlussmethode

J: SAE-Anschluss

%Die Zeichnung zeigt TLB-2J□-P im gelösten Zustand.


Anmerkungen

Anschluss Lösen: O-Ring (inkludiert)

(nur -C Option)

- *1. Befestigungsschrauben sind nicht im Lieferumfang enthalten. Diese sind vom Kunden basierend auf den Abmessungen "S " bereitzustellen.
- ※2. Geschwindigkeitsregelventil separat erhältlich. Sehen Sie ein solches unter Bezugnahme auf S. 727 vor.

Modell Nr. Bezeichnung

1 Baugröße (Spannkraft)

4 Schwenkrichtung beim Spannen

5 Option (Wenn P gewählt wird)

Abmessungen und Fertigungsmaße für die Montage

Mode	ll Nr.	TLB0401-2 -P	TLB0601-2 - P	TLB0801-2 -P	TLB1001-2 -P	TLB1601-2 - P	TLB2001-2 - P	TLB2501-2 -P	(mm)
Gesam	ıthub	14	15	18	19.5	24	26.5	32	35.5
Schwenkh	ub (90°)	6	7	8	9.5	11	13.5	16	19.5
Vertika	alhub	8	8	10	10	13	13	16	16
А		97.5	105	119	134.5	159.5	180	211	241
В		49.5	53.5	56.5	64	71.5	84.5	99.5	118
C		47	55	57	70	71	90	84	102
D		32	36	39	46.5	53	63.5	71	90
Е		62.5	66	74	83	99.5	111.5	131	148.5
F		36.5	40	48	57	72.5	81.5	101	112.5
G		26	26	26	26	27	30	30	36
Н		33	35	36.5	40	43.5	52	57.5	67
J		16.5	18.5	20	24	28	32.5	42	51
К	(11	12	13.5	16	20	22.5	32	40
Ку	/	18	21	22	27	27.5	35	32	40
L		76	78	83	93	98	118	132	148
М		15	15	15	15	16	16.5	16.5	22.5
No	X	22	24	25.5	29	32.5	38	43.5	53
Ny	у	9	9	10	12	14	17	19	20
P		3	3	3	3	3	5	5	5
Q	!	9	11	11	14	14	17.5	17.5	20
R		5.5	6.8	6.8	9	9	11	11	14
S		24	24	24	24	25	28	28	33
U		14	16	18	22	25	30	35.5	45
P.A	4	7	8	8	10	13	16	18	24
PE	3	12	14	16	20	23	28	33.5	43
PC	2	6 ^{+0.018}	8 +0.022	8 +0.022	10 ^{+0.022}	12 ^{+0.027}	15 ^{+0.027}	18 ^{+0.027}	22 +0.033
PE)	8.5	10	11	12	13.5	16.5	20	24.5
PE	<u> </u>	18	21	24	28.5	32.5	38.5	44.5	53.5
PF	-	19	22	25	30	34	40	46	55
PC	ĵ	16	17	20	21.5	26	28.5	34	37.5
PH (Gewinde	× Steigung)	M3×0.5	M3×0.5	M3×0.5	M4×0.7	M5×0.8	M6×1	M6×1	M8×1.25
CA (Gewinde	× Steigung)	M5×0.8	M6×1	M6×1	M8×1.25	M8×1.25	M10×1.5	M10×1.5	M12×1.75
JA	4	3	3	3	3	3	3.5	3.5	3.5
JB	3	14	14	14	14	14	19	19	19
Fas	se	3	4	4	4	4	5	6	6
Anschluss Spannen/	-C Option	G1/8	G1/8	G1/8	G1/8	G1/8	G1/4	G1/4	G1/4
Anschluss Lösen	-J Option	SAE2	SAE2	SAE2	SAE2	SAE2	SAE4	SAE4	SAE4
O-Ring	-C Option	1BP5	1BP5	1BP5	1BP5	1BP5	1BP7	1BP7	1BP7
Zylindervolumen	Spannen	1.4	2.2	3.6	5.5	10.0	16.3	26.2	43.9
cm ³	Lösen	3.6	5.2	8.1	12.9	21.8	35.0	57.9	100.4
Masse **6	kg	0.6	0.8	1.1	1.6	2.7	3.5	5.5	8.1

*5. Masse eines Einzelschwenkspanners einschließlich Konushülse und Mutter. Anmerkung

(Formatbeispiel: TLB0801-2CR-P, TLB4001-2JL-P)

2 Konstruktionsnummer

3 Anschlussmethode

SFA SFC

LHA

Bohrungsspanner

LHC LHS LHW LT/LG TLA-2 TLA-1

Hebelspanner LKA LKC LKW LM/LJ TMA-2 TMA-1

Abstützelemen LD TNC TC

Zylinder mit Positionsabfrage LLW

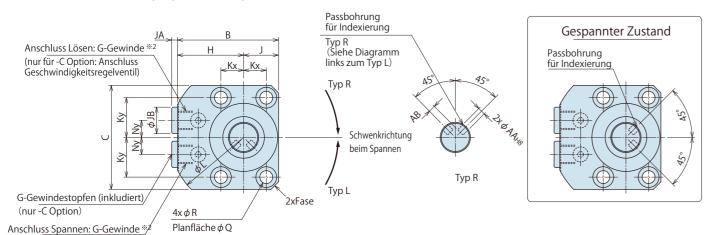
Kompaktzylinde LLR LLU DP DR DS

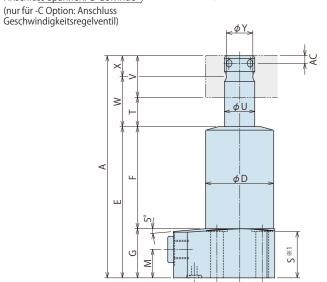
DT Blockzylinder DBA

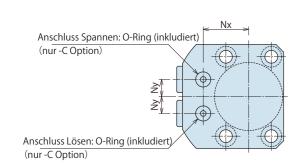
DBC

Regelventil BZL BZT BZX/JZG Nullpunkt-Spannsystem

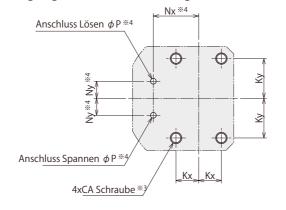
٧S VT Hydraulischer VM


٧J ٧K Niederzug-Spannelement

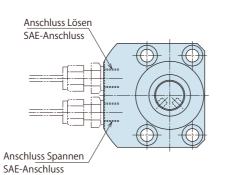

FQ Kundenspezifischer


45 **K**

Abmessungen


C: O-Ring-Anschluss (mit G-Gewindestopfen) **Die Zeichnung zeigt TLB-2CL-Q im gelösten Zustand.

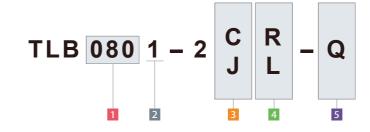
Fertigungsmaße für die Montage


Anmerkungen

- ※3. Die Gewindetiefe CA sollte so berechnet werden, dass die Befestigungsschrauben mindestens 1.5 x den Schraubendurchmesser in die Vorrichtung eingreifen.
- **4. Dieser Vorgang zeigt -C: O-Ring-Anschluss.
 Die Rauheit der Montagefläche (O-Ring-Fläche) sollte
 6.3S
 VVV oder weniger betragen.

Anschlussmethode

J: SAE-Anschluss


**Die Zeichnung zeigt TLB-2JL-Q im gelösten Zustand.

Anmerkungen

- ※1. Befestigungsschrauben sind nicht im Lieferumfang enthalten. Diese sind vom Kunden basierend auf den Abmessungen "S" bereitzustellen.
- ※2. Geschwindigkeitsregelventil separat erhältlich. Sehen Sie ein solches unter Bezugnahme auf S. 727 vor.
- Stellen Sie einen Schwenkhebel und Befestigungsschrauben wie auf S. 429 und S. 430 gezeigt bereit.

Modell Nr. Bezeichnung

(Formatbeispiel: TLB0801-2CR-Q, TLB4001-2JL-Q)

Baugröße (Spannkraft)

2 Konstruktionsnummer

3 Anschlussmethode

4 Schwenkrichtung beim Spannen

5 Option (Wenn Q gewählt wird)

SFA

Abmessungen und Fertigungsmaße für die Montage

Mode	ell Nr.	TLB0401-2 -Q	TLB0601-2□□-Q	TLB0801-2□□-Q	TLB1001-2□□-Q	TLB1601-2□□-Q	TLB2001-2□□-Q	TLB2501-2□□-Q	TLB4001-200-0
Gesar	mthub	22	23	28	29.5	36	38.5	48	51.5
Schwenk	hub (90°)	6	7	8	9.5	11	13.5	16	19.5
Vertik	calhub	16	16	20	20	25	25	32	32
,	A	121.5	129	149	164.5	195.5	216	259	289
I	В	49.5	53.5	56.5	64	71.5	84.5	99.5	118
(С	47	55	57	70	71	90	84	102
[D	32	36	39	46.5	53	63.5	71	90
I	E	78.5	82	94	103	123.5	135.5	163	180.5
	F	52.5	56	68	77	96.5	105.5	133	144.5
(G	26	26	26	26	27	30	30	36
I	Н	33	35	36.5	40	43.5	52	57.5	67
	J	16.5	18.5	20	24	28	32.5	42	51
K	(χ	11	12	13.5	16	20	22.5	32	40
K	(y	18	21	22	27	27.5	35	32	40
I	L	76	78	83	93	98	118	132	148
N	M	15	15	15	15	16	16.5	16.5	22.5
N	٧x	22	24	25.5	29	32.5	38	43.5	53
N	١y	9	9	10	12	14	17	19	20
	P	3	3	3	3	3	5	5	5
(Q	9	11	11	14	14	17.5	17.5	20
	R	5.5	6.8	6.8	9	9	11	11	14
	S	24	24	24	24	25	28	28	33
-	T	24	25	30	31.5	38	40.5	50	53.5
l	U	14	16	18	22	25	30	35.5	45
١	V	19	22	25	30	34	40	46	55
١	N	33.5	36	42.5	46.5	55	60.5	73	81
)	X	9.5	11	12.5	15	17	20	23	27.5
,	Υ	12.5	14	16	19.5	22	26	31	39.5
A	λA	3 +0.014	4 +0.018	4 +0.018	4 +0.018	4 +0.018	6 +0.018	6 +0.018	8 +0.02
А	ΛB	4	4	5	7	8.5	9	11.75	14.5
A	\C	3.5	4.5	4.5	4.5	5	6.5	6.5	9
CA (Gewinde	× Steigung)	M5×0.8	M6×1	M6×1	M8×1.25	M8×1.25	M10×1.5	M10×1.5	M12×1.75
J	Α	3	3	3	3	3	3.5	3.5	3.5
J	IB	14	14	14	14	14	19	19	19
Fa	ase	3	4	4	4	4	5	6	6
schluss Spannen/	-C Option	G1/8	G1/8	G1/8	G1/8	G1/8	G1/4	G1/4	G1/4
schluss Lösen	-J Option	SAE2	SAE2	SAE2	SAE2	SAE2	SAE4	SAE4	SAE4
-Ring	-C Option	1BP5	1BP5	1BP5	1BP5	1BP5	1BP7	1BP7	1BP7
	bolzen (inkludiert)	φ3×6 (Klasse B)	ϕ 4×8 (Klasse B)				ϕ 6 × 12 (Klasse B)		
lindervolumen	Spannen	2.2	3.4	5.6	8.3	15.0	23.4	39.3	63.7
cm ³	Lösen	5.7	8.0	12.6	19.5	32.7	50.8	86.9	145.7
asse **6	kg	0.7	1.0	1.3	1.9	3.2	4.2	6.6	9.7

Pneumatik-Serie

High-Power-

Hydraulik-Serie

Ventile/Kupplung Hydraulikeinheit

Manuelle Produkte Zubehör

Hinweise/Sonstiges

Bohrungsspanner

SFA

SFC

SFA
SFC
Schwenkspanner
LHA

LHC
LHS
LHW
LT/LG
TLA-2
TLB-2
TLA-1

LKA
LKC
LKW
LM/LJ
TMA-2
TMA-1

LD
LC
TNC
TC
Zylinder mit
Positionsabfrage

Abstützelemen

LLW

Kompaktzylinder

LL

LLR

LLU

DP

DS DT Blockzylinder DBA DBC

DR

Regelventil

BZL

BZT

BZX/JZG

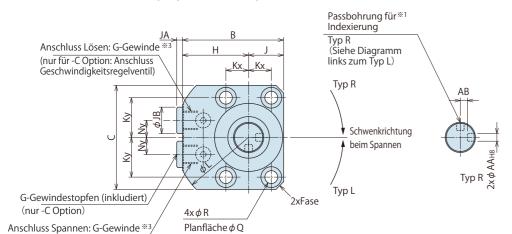
NullpunktSpannsystem

VS
VT

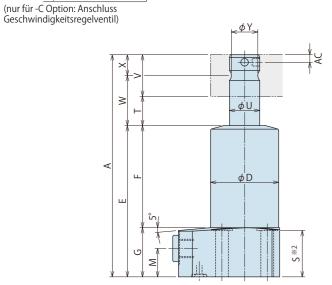
Hydraulischer
Positionszylinder

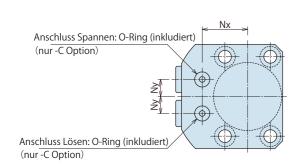
VL
VM

VK Niederzug-Spannelement

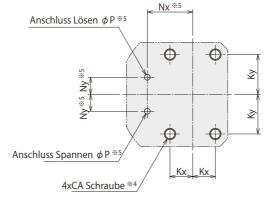

٧J

FP FQ

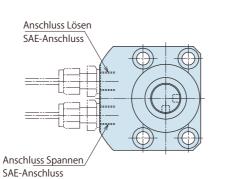

Kundenspezifischer Federspeicherzylinde DWA/DWB


Abmessungen

C: O-Ring-Anschluss (mit G-Gewindestopfen) *Die Zeichnung zeigt TLB-2CL-Y45 im gelösten Zustand.



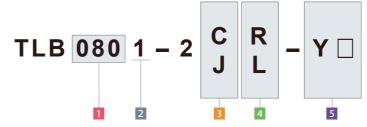
C Fertigungsmaße für die Montage


Anmerkungen

- *4. Die Gewindetiefe CA sollte so berechnet werden, dass die Befestigungsschrauben mindestens 1.5 x den Schraubendurchmesser in die Vorrichtung eingreifen.
- %5. Dieser Vorgang zeigt -C: O-Ring-Anschluss. Die Rauheit der Montagefläche (O-Ring-Fläche) sollte 6.3S oder weniger betragen.

Anschlussmethode

J: SAE-Anschluss


**Die Zeichnung zeigt TLB-2JL-Y45 im gelösten Zustand.

Anmerkungen

- *1. Die Position der Passbohrung für die Spannhebelindexierung im gelösten Zustand ändert sich mit dem Schwenkwinkel.
- *2. Befestigungsschrauben sind nicht im Lieferumfang enthalten. Diese sind vom Kunden basierend auf den Abmessungen "S " bereitzustellen.
- *3. Geschwindigkeitsregelventil separat erhältlich. Sehen Sie ein solches unter Bezugnahme auf S. 727 vor.
- 1. Stellen Sie einen Schwenkhebel und Befestigungsschrauben wie auf S. 429 und S. 430 gezeigt bereit.

Modell Nr. Bezeichnung

(Formatbeispiel: TLB0801-2CR-Y30, TLB1601-2JL-Y45)

- 1 Baugröße (Spannkraft)
- 2 Konstruktionsnummer
- 3 Anschlussmethode
- 4 Schwenkrichtung beim Spannen
- 5 Option (Wenn Y□ gewählt wird)

Abmessungen und Fertigungsmaße für die Montage

																									(111111)
Mode	ell Nr.	TLB0	401-2	□□-Y	TLB0	501-2	□□-Y	TLB0	801-2	□□-Y	TLB1	001-2	□-Y	TLB1	601-2	□□-Y	TLB20	001-2	□□-Y	TLB2	2501-2	□□-Y	TLB40	01-2	□□-Y
Schwen	kwinkel	30°	45°	60°	30°	45°	60°	30°	45°	60°	30°	45°	60°	30°	45°	60°	30°	45°	60°	30°	45°	60°	30°	45°	60°
Gesan	nthub	11.7	12.3	12.9	12.2	12.9	13.6	14.9	15.7	16.5	15.7	16.7	17.6	19.5	20.6	21.7	21.2	22.6	23.9	26.1	27.6	29.0	27.6	29.5	31.5
Schwenkl	hub (90°)	3.7	4.3	4.9	4.2	4.9	5.6	4.9	5.7	6.5	5.7	6.7	7.6	6.5	7.6	8.7	8.2	9.6	10.9	10.1	11.6	13.0	11.6	13.5	15.5
Vertik	alhub		8			8			10			10			13			13			16			16	
- A	A	95.2	95.8	96.4	102.2	102.9	103.6	115.9	116.7	117.5	130.7	131.7	132.6	155	156.1	157.2	174.7	176.1	177.4	205.1	206.6	208	233.1	235	237
E	В		49.5			53.5			56.5			64			71.5			84.5			99.5			118	
(C		47			55			57			70			71			90			84			102	
)		32			36			39			46.5			53			63.5			71			90	
	E		62.5			66			74			83			99.5			111.5			131		1	48.5	
	F		36.5			40			48			57			72.5			81.5			101		1	12.5	
(Ĵ.		26			26			26			26			27			30			30			36	
-	1		33			35			36.5			40			43.5			52			57.5			67	
	J		16.5			18.5			20			24			28			32.5			42			51	
K	ίχ		11			12			13.5			16			20			22.5			32			40	
K	ίy		18			21			22			27			27.5			35			32			40	
l	Ĺ		76			78			83			93			98			118			132			148	
Λ	М		15			15			15			15			16			16.5			16.5			22.5	
N	lx		22			24			25.5			29			32.5			38			43.5			53	
N	ly		9			9			10			12			14			17			19			20	
F	P		3			3			3			3			3			5			5			5	
(Q		9			11			11			14			14			17.5			17.5			20	
F	R		5.5			6.8			6.8			9			9			11			11			14	
	5		24			24			24			24			25			28			28			33	
7	Г	13.7	14.3	14.9	14.2	14.9	15.6	16.9	17.7	18.5	17.7	18.7	19.6	21.5	22.6	23.7	23.2	24.6	25.9	28.1	29.6	31	29.6	31.5	33.5
l	J		14			16			18			22			25			30			35.5			45	
	V		19			22			25			30			34			40			46			55	
V	V	23.2	23.8	24.4	25.2	25.9	26.6	29.4	30.2	31.0	32.7	33.7	34.6	38.5	39.6	40.7	43.2	44.6	45.9	51.1	52.6	54	57.1	59	61
)	Χ		9.5			11			12.5			15			17			20			23			27.5	
)	Y		12.5			14			16			19.5			22			26			31			39.5	
A	Α		3 +	0.014		4 +	0.018 0		4 +	0.018		4 +	0.018		4 +	0.018		6 +	0.018		6 +	0.018		8 +	0.022
A	ιB		4			4	-		5			7			8.5			9	-		11.75			14.5	
A	ıC		3.5			4.5			4.5			4.5			5			6.5			6.5			9	
CA (Gewinde	× Steigung)	N	15×0	.8	٨	16×1	1	٨	Л6×	1	M	3×1.2	25	M	8×1.	25	M	10×1	.5	N	110×1	.5	M1.	2×1.	.75
	A		3			3			3			3			3			3.5			3.5			3.5	
J	В		14			14			14			14			14			19			19			19	
Fa	ise		3			4			4			4			4			5			6			6	
Anschluss Spannen/	-C Option		G1/8			G1/8			G1/8			G1/8			G1/8			G1/4			G1/4		(31/4	
Anschluss Lösen	-J Option		SAE2			SAE2		SAE2			SAE2			SAE2			SAE4		SAE4			SAE4			
O-Ring	-C Option		1BP5			1BP5			1BP5			1BP5			1BP5			1BP7			1BP7		1	BP7	
Hebel Mitnehmerl	bolzen (inkludiert)	φ3>	< 6 (Kla	sse B)	φ4×	8 (Kla	sse B)	φ4×	8 (Kla	sse B)	φ4×	(8 (Kla	sse B)	φ4>	< 8 (Kla	isse B)	φ6×	12 (Kla	asse B)	φ6>	< 12 (Kla	asse B)	φ8×1	6 (Kla	asse B)
Zylindervolumen	Spannen	1.2	1.2	1.3	1.8	1.9	2.0	2.9	3.1	3.3	4.4		4.9	8.1	8.6		-				22.6				
cm ³	Lösen	3.0	3.2	3.3	4.3	4.5	4.7	6.7	7.1	7.4	10.4	11.0	11.6	17.7	18.7	19.7	28.0	29.8	31.6	47.2	49.9	52.5	78.1	83.4	89.1
Masse **6	kg		0.6			0.8			1.1			1.6			2.7			3.5			5.5			8.1	
	J																								

*6. Masse eines Einzelschwenkspanners einschließlich Konushülse und Mutter. Anmerkung

Pneumatik-Serie

High-Power-

Ventile/Kupplung Hydraulikeinheit

Manuelle Produkte Zubehör

Hinweise/Sonstiges

Bohrungsspanner

SFA SFC

> LHA LHC LHS LHW LT/LG TLA-2

TLA-1 Hebelspanner LKA LKC LKW

TMA-1 Abstützelemen LD TNC

LM/LJ TMA-2

Zylinder mit Positionsabfrage LLW

TC

Kompaktzylinde LLR LLU DP DR DS

DT Blockzylinder DBA

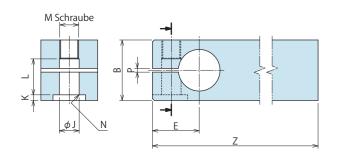
DBC Regelventil BZL BZT BZX/JZG Nullpunkt-Spannsystem

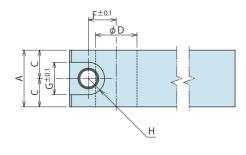
٧S VT Hydraulischer

VM ٧J ٧K

Niederzug-Spannelement

FQ Kundenspezifischer


KOSMEK

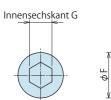

Zubehör : Schwenkhebelmaterial

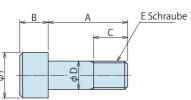
**Beim Design und bei der Herstellung von Schwenkhebeln sind die Montageabmessungen im Diagramm zu berücksichtigen. Die Verwendung anderer Abmessungen als in der Liste angeführt kann bei der Herstellung des Schwenkhebels zu Fehlfunktionen führen, einschließlich einer von der Spezifikation abweichenden Spannkraft, Verformungen und Beschädigungen.

Modell Nr. Bezeichnung

								(mm)
Modell	TLZ0400-L2				TLZ1600-L2			TLZ4000-L2
Entsprechendes Modell Nr.	TLB0401-2	TLB0601-2	TLB0801-2	TLB1001-2	TLB1601-2	TLB2001-2	TLB2501-2	TLB4001-2
Α	19	22	25	30	34	40	46	55
В	22	25	26	32	36	45	53	70
C	9.5	11	12.5	15	17	20	23	27.5
D	14 0 -0.016	16 0 -0.016	18 0 -0.016	22 _0_0	25 0 -0.020	30 _0_0	35.5 _{-0.025}	45 0 -0.025
Е	15	18	19	23	26.5	31.5	36.5	46
F	9.25	11	12	14.75	17	20	23.5	29.75
G	11	14	14	17.5	20	23	26	32
Н	5.5	7	7	8.75	10	11.5	13	16
J	6.5	8.5	8.5	10.5	12.5	14.5	16.5	21
K	2	3	3	4	4	5	7	9
L	13.5	15.5	16	18	22	26.5	31	42
М	M6×1	M8×1	M8×1	M10×1.25	M12×1.5	M14×1.5	M16×1.5	M20×2
N	C0.4	C0.6	C0.6	C0.6	C1	C1	C1	C1
Р	2	2	2	2	2	2	2	2
Z	105	120	145	160	170	175	185	220

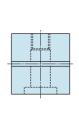
Anmerkungen

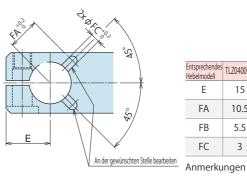

- 1. Material : S50CH
- 2. Falls erforderlich sollte das Kopfende zusätzlich bearbeitet werden.
- 3. Eine Indexierung ist erforderlich. Führen Sie eine zusätzliche Bearbeitung anhand der unten angegebenen Abmessungen durch.
- 4. Die Befestigungsschraube für den Hebel wird separat angeboten.

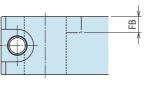

Zubehör : Befestigungsschrauben für Schnellwechselhebel

💥 Berücksichtigen Sie beim Design und bei der Herstellung der Hebelbefestigungsschraube die Abmessungen in der Abbildung und verwenden Sie Material der Festigkeitsklasse 12.9.

Modell Nr. Bezeichnung




								(mm)
Modell	TLZ0400-LB	TLZ0600-LB	TLZ0800-LB	TLZ1000-LB	TLZ1600-LB	TLZ2000-LB	TLZ2500-LB	TLZ4000-LB
Entsprechendes Modell Nr.	TLB0401-2	TLB0601-2	TLB0801-2	TLB1001-2	TLB1601-2	TLB2001-2	TLB2501-2	TLB4001-2
Α	20	22	23	28	32	40	46	61
В	6	8	8	10	12	14	16	20
С	7	9	10	11	13	16	18	23
D	6	8	8	10	12	14	16	20
Е	M6×1	M8×1	M8×1	M10×1.25	M12×1.5	M14×1.5	M16×1.5	M20×2
F	10	13	13	16	18	21	24	30
G	5	6	6	8	10	12	14	17


© Fertigungsmaße für die Passbohrung für Indexierung (Referenz)

※ Dieser zusätzliche Vorgang gilt für TLB□1-2.

Übersicht S.285

								(mm)
Entsprechendes Hebelmodell	TLZ0400-L2	TLZ0600-L2	TLZ0800-L2	TLZ1000-L2	TLZ1600-L2	TLZ2000-L2	TLZ2500-L2	TLZ4000-L2
Е	15	18	19	23	26.5	31.5	36.5	46
FA	10.5	12.5	13.5	15.5	17	21.5	24.2	31
FB	5.5	7	7	7	7.5	10	10	13.5
FC	3	4	4	4	4	6	6	8

1. Material: S50CH

- 2. Wenn eine Indexierung erforderlich ist, berücksichtigen Sie die Schwenkhebel Abmessungen des jeweiligen Modells. Wenn keine Indexierung erforderlich ist, ist die
- Bearbeitung nicht notwendig.

High-Power-

Ventile/Kupplung Hydraulikeinheit

Pneumatik-Serie

Manuelle Produkte Zubehör

Bohrungsspanner SFA

SFC

LHA LHC LHS LHW LT/LG TLA-2

Hebelspanner LKA LKC

TLA-1

LKW LM/LJ TMA-2 TMA-1

Abstützelemen LD TNC

TC Zylinder mit Positionsabfrage

LLW Kompaktzylinde

> LLR LLU DP DR DS

DT Blockzylinder DBA

DBC

Regelventil BZL BZT

BZX/JZG Nullpunkt-Spannsystem ٧S

VT Hydraulischer

> VM ٧J VK

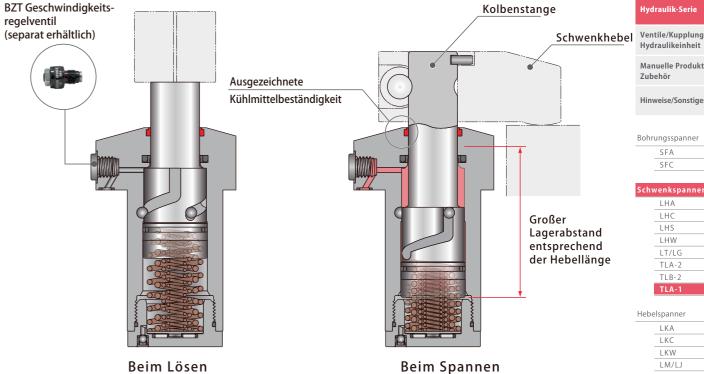
Niederzug-Spannelement

FQ

Kundenspezifischer Federspeicherzylind DWA/DWB

Hydraulisch einfachwirkender Schwenkspanner

Modell TLA-1


Hochdruck (7~35 MPa) Flansch oben

Index

Hydraulischer Schwenkspanner Übersicht	S.285
Funktionsbeschreibung ————————————————————————————————————	S.432
Modell Nomenklatur	S.433
Spezifikationen	S.434
Leistung	
• Spannkraft	S.435
Diagramm zulässige Schwenkzeit	S.437
Abmessungen	
Flansch oben / Standardmodell (TLA-1)	S.439
Spannhebel Abmessungen	S.443
Zubehör	
Schwenkhebelmaterial für TLA	S.443
Geschwindigkeitsregelventil • Stopfen	S.727
Hinweise	
Anmerkungen zu hydraulischen Schwenkspannern	S.445
Hinweise (allgemein) Einbauhinweise Liste Hydraulikflüssigkeiten Hinweise zur Verwendung von hydraulischen Drosselventilen Hinweise zum Umgang Wartung/Inspektion Garantie	

Funktionsbeschreibung

Hydraulischen Druck wegnehmen, das Lösen erfolgt durch die Feder. Ausführung des Spannvorgangs durch Zufuhr von hydraulischem Druck zum Spannanschluss.

Geschwindigkei

Möglichkeit,

Möglichkeit, längere Hebel zu verwenden

Der große Lagerabstand ermöglicht die Verwendung längerer Spannhebel durch Stützung der Kolbenstange. Die Führung befindet sich zwischen dem Flansch und dem Rand der Kolbenstange.

• Hohe Geschwindigkeit und hohe Beständigkeit durch Drehmechanismus

Durch Vergrößerung des Kolbenstangendurchmessers, die

längere Hebel Verwendung größerer Stahlkugeln und die Ausführung der Führungsnut werden eine hohe Beständigkeit und ein geringeres Drehmoment erzielt.

• Ausgezeichnete Kühlmittelbeständigkeit

Unser spezieller Abstreifer ist zum Schutz vor Hochdruckkühlmittel konzipiert. Durch Verwendung eines Dichtungsmaterials mit ausgezeichneter chemischer Beständigkeit ist er auch äußerst beständig gegen Kühlmittel auf Chlorbasis.

• Direkte Anschlussmöglichkeit eines Geschwindigkeitsregelventils

Bei einem O-Ring-Anschluss (-C Option) ist es möglich, ein BZT Geschwindigkeitsregelventil mit Be-/Entlüftungsfunktion anzuschließen. (Geschwindigkeitsregelventil separat erhältlich.) High-Power-Pneumatik-Serie

Bohrungsspanne

SFC

LHA LHC LHS

LHW TLA-2 TI B-2

TLA-1 Hebelspanner LKA

LKC LKW LM/LJ TMA-2 TMA-1

LD LC TNC

TC Zylinder mit Positionsabfrage

LLW Kompaktzylinde

> LLR LLU DP DR

Blockzylinder

DBA DBC Regelventil

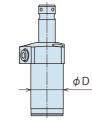
BZL BZT BZX/JZG

Spannsystem ٧S

VT Hydraulischer

> VM ٧J ٧K

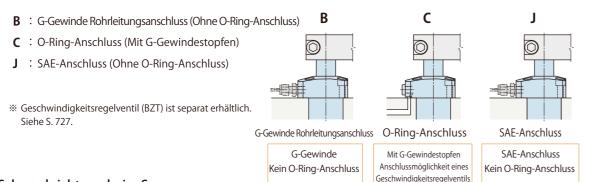
FQ Kundenspezifischer


KOSMEK

Modell Nr. Bezeichnung

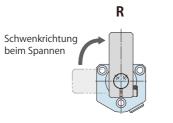
1 Baugröße (Spannkraft)

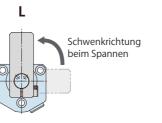
160 : φD=46mm
200 : φD=56mm
250 : φD=63mm
400 : φD=90mm



2 Konstruktionsnummer

2 : Revisionsnummer


st Außendurchmesser (ϕ D) des Zylinders.


3 Anschlussmethode

4 Schwenkrichtung beim Spannen

R: im Uhrzeigersinn L : gegen den Uhrzeigersinn

Spezifikationen

Modell Nr.		TLA0402-1□□	TLA0602-1□□	TLA0802-1□□	TLA1002-1□□			
Kolbenfläche	cm ²	1.005	1.453	1.979	2.804			
Spannkraft (Berechnungsformel) **1	kN	F= P-1.88	F= P-1.83	F= P-2.19	F= P-2.48			
Spannkrant (berechhungstonner)	KIN	r= 10.95+0.0426×L	7.57+0.0276×L	5.53+0.0178×L	3.91+0.0113×L			
Gesamthub	mm	16	17.5	17.5	18.5			
Schwenkhub (90°)	mm	8	9.5	7.5	8.5			
Vertikalhub	mm	8	8	10	10			
Rückstellfederkraft	kN	0.13~0.21	0.17~0.29	0.31~0.48	0.51~0.76			
Rückschwenk-Moment **2	N∙m	0.13	0.21	0.39	0.67			
Schwenkwinkel Genauigkeit			90° :	±3°				
Schwenkwinkel Wiederholgenauigkeit			±0	.5°				
Max. Betriebsdruck	MPa		35	5.0				
Min. Betriebsdruck **3	MPa		7	.0				
Prüfdruck	MPa	42.0						
Betriebstemperatur	°C	C 0 ~ 70						
Medium		Standard-Hydrauliköl nach ISO-VG-32						

Modell Nr.		TLA1602-1□□	TLA2002-1□□	TLA2502-1□□	TLA4002-1□□				
Kolbenfläche	cm ²	4.170	6.134	8.198	12.37				
Spannkraft (Berechnungsformel) *1	kN	F= P-2.00	F= P-2.01	F= P-1.99	F= P-2.09				
Spannkrart (belectifullysionile)	KIN	$r = {2.60 + 0.0059 \times L}$	1.77+0.0036×L	1.32+0.0021×L	$r = {0.87 + 0.0012 \times L}$				
Gesamthub	mm	22.5	25	29.5	33				
Schwenkhub (90°)	mm	9.5	12	13.5	17				
Vertikalhub	mm	13	13	16	16				
Rückstellfederkraft	kN	0.58~0.94	0.88~1.46	1.15~1.82	1.83~2.83				
Rückschwenk-Moment **2	N∙m	0.94	1.36	1.94	4.17				
Schwenkwinkel Genauigkeit			90° :	±3°					
Schwenkwinkel Wiederholgenauigkeit			±0	.5°					
Max. Betriebsdruck	MPa		35	5.0					
Min. Betriebsdruck **3	MPa		7	.0					
Prüfdruck	MPa	42.0							
Betriebstemperatur	°C		0 ~	70					
Medium		Standard-Hydrauliköl nach ISO-VG-32							

Anmerkungen **1. F: Spannkraft (kN), P: Hydraulischer Versorgungsdruck (MPa), L: Distanz zwischen Kolben und Spannpunkt (mm).

- ※2. Referenzwerte gelten nur, wenn die Spanner horizontal montiert werden. (Werte abhängig von der Anzahl der Spanner und den Anschlussbedingungen des Kreises.)
- *3. Minimaldruck, um den Spanner ohne Last zu betreiben.
- Siehe Abmessungen, wenn Sie Informationen zur Masse und zum Zylindervolumen benötigen.

Jene
Pneumatik-Ser

High-Power-

Ventile/Kupplung Hydraulikeinheit

Bohrungsspanne SFA SFC

> LHA LHC LHS LHW LT/LG TLA-2 TI B-2 TLA-1

Hebelspanner LKA LKC LKW LM/LJ TMA-2 TMA-1

> LD LC TNC TC

Abstützelement

Zylinder mit Positionsabfrage LLW

Kompaktzylinder LLR LLU DP

DR DS DT Blockzylinder

DBA DBC Regelventil

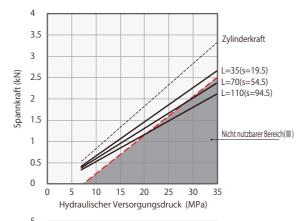
BZL BZT BZX/JZG

Nullpunkt-Spannsystem ٧S

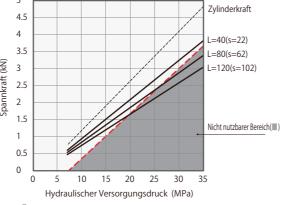
VT Hydraulischer

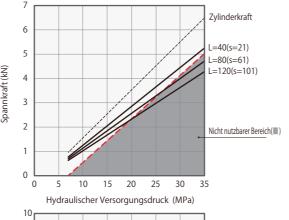
> VM ٧J VK

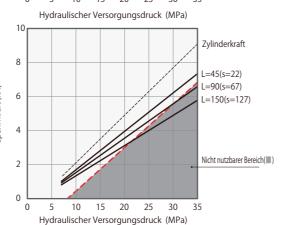
Niederzug-Spannelement FQ Kundenspezifischer



TLAO402-1 | Spannkraft Berechnungsformel ** 1 (kN) $F = (P - 1.88) / (10.95 + 0.0426 \times L)$ L=35 L=40 L=50 L=60 L=70 L=80 L=90 L=110 (mm)
2.7 2.7 2.6 53 0.8 0.8 0.7 0.6 0.4 0.4


TLA060	D2-1 Spannkra	Spannkraft Berechnungsformel $\stackrel{\times}{\times}$ 1 (kN) $F = (P - 1.83) / (7.57 + 0.02)$								
Hydraulischer	Zylinderkraft			Spannk	raft (kN)	Nicht nu	ereich(Max. Hebel	
Druck	(kN)			He	ebelländ	ge L (mi	m)			länge (L)
(MPa)		L=40	L=50	L=60	L=70	L=80	L=90	L=100	L=120	(mm)
35	4.81	3.9	3.8							54
32.5	4.45	3.6	3.5							59
30	4.08	3.3	3.2	3.1						66
27.5	3.72	3.0	2.9	2.8	2.8					74
25	3.36	2.7	2.6	2.6	2.5	2.4				84
22.5	2.99	2.4	2.4	2.3	2.2	2.2	2.1			98
20	2.63	2.1	2.1	2.0	2.0	1.9	1.9	1.8		117
17.5	2.27	1.9	1.8	1.7	1.7	1.7	1.6	1.6	1.5	146
15	1.90	1.6	1.5	1.5	1.4	1.4	1.4	1.3	1.3	193
12.5	1.54	1.3	1.2	1.2	1.2	1.1	1.1	1.1	1.0	200
10	1.18	1.0	1.0	0.9	0.9	0.9	0.9	0.8	0.8	200
7	0.74	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.5	200
Max. Betriel	osdruck (MPa)	35.0	35.0	32.1	28.6	25.9	23.8	22.2	19.7	


TLA080	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$										
Hydraulischer	Zylinderkraft			Spannk	raft (kN)	Nicht nu	ıtzbarer Be	ereich(III)	Max. Hebel	
Druck	(kN)		Hebellänge L (mm)								
(MPa)		L=40	L=50	L=60	L=70	L=80	L=90	L=100	L=120	(mm)	
35	6.48	5.3	5.2							56	
32.5	5.99	4.9	4.8	4.6						61	
30	5.49	4.5	4.4	4.3						68	
27.5	5.00	4.1	4.0	3.9	3.8					76	
25	4.50	3.7	3.6	3.5	3.4	3.3				87	
22.5	4.01	3.3	3.2	3.1	3.0	3.0	2.9	2.8		101	
20	3.51	2.9	2.8	2.7	2.7	2.6	2.5	2.5	2.4	121	
17.5	3.02	2.5	2.4	2.4	2.3	2.3	2.2	2.1	2.0	150	
15	2.52	2.1	2.0	2.0	1.9	1.9	1.8	1.8	1.7	198	
12.5	2.03	1.7	1.7	1.6	1.6	1.5	1.5	1.5	1.4	230	
10	1.53	1.3	1.3	1.2	1.2	1.2	1.1	1.1	1.1	230	
7	0.94	0.8	0.8	0.8	0.8	0.7	0.7	0.7	0.7	230	
Max. Betriel	osdruck (MPa)	35.0	35.0	33.0	29.3	26.6	24.4	22.7	20.1		

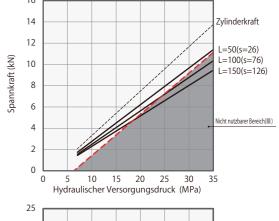

TLA100	D2-1 Spann	kraft Berechnu	ngsformel *	^{{1} (k	N) F=	= (P – 2	2.48)/	(3.91	+ 0.011	13×L)	
Hydraulischer	Zylinderkra	ft		Spannk	raft (kN)	Nicht nu	ıtzbarer Be	ereich(Max. Hebel	
Druck	Druck (kN)		Hebellänge L (mm)								
(MPa)	a) , ,		L=50	L=60	L=70	L=90	L=110	L=130	L=150	(mm)	
35	9.11	7.4	7.3	7.1	7.0					75	
32.5	8.41	6.8	6.8	6.6	6.4					83	
30	7.71	6.3	6.2	6.0	5.9	5.6				92	
27.5	7.01	5.7	5.6	5.5	5.4	5.1				104	
25	6.30	5.1	5.1	5.0	4.8	4.6	4.4			120	
22.5	5.60	4.6	4.5	4.4	4.3	4.1	3.9	3.8		141	
20	4.90	4.0	4.0	3.9	3.8	3.6	3.4	3.3	3.2	171	
17.5	4.20	3.4	3.4	3.3	3.2	3.1	3.0	2.8	2.7	217	
15	3.50	2.9	2.8	2.8	2.7	2.6	2.5	2.4	2.3	250	
12.5	2.80	2.3	2.3	2.2	2.2	2.1	2.0	1.9	1.8	250	
10	2.10	1.8	1.7	1.7	1.6	1.6	1.5	1.4	1.4	250	
7	1.26	1.1	1.1	1.0	1.0	1.0	0.9	0.9	0.9	250	
Max. Betriel	osdruck (MPa)	35.0	35.0	35.0	35.0	30.5	26.5	23.7	21.6		

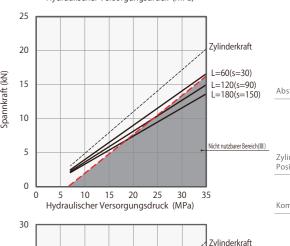
Spannkraft ca. 8.0 kN.

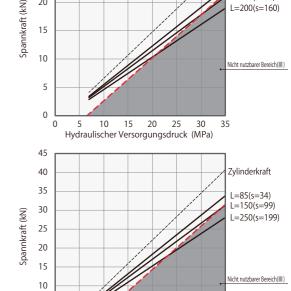
Anmerkungen

- 1. Die Tabellen und Diagramme zeigen die Wechselwirkungen von Spannkraft (kN) und hydraulischem Versorgungsdruck (MPa).
- 2. Die Zylinderkraft (wenn L=0) kann nicht aus der Berechnungsformel für die Spannkraft abgeleitet werden.

Leistung


- 3. Es kann vorkommen, dass es bei großer Trägheit je nach hydraulischem Versorgungsdruck oder Schwenkhebelmontageposition keine Schwenkhebelfunktion gibt.
- 4. Die angeführten Spannkräfte beziehen sich auf die Spannposition.
- 5. Die Spannkraft variiert je nach Spannhebellänge. Zulässigen hydraulischen Versorgungsdruck je nach Spannhebellänge beachten.
- 6. Ein Betrieb im nicht nutzbaren Bereich kann zu Schäden am Spannelement und Flüssigkeitsaustritt führen.
- 7. Die Tabellen und Diagramme dienen nur als Referenz. Die genauen Werte sind auf Basis der Formel in der Spezifikationentabelle zu berechnen.
- ※1. F: Spannkraft (kN), P: Hydraulischer Versorgungsdruck (MPa), L: Hebellänge (mm).


TLA1602-1 Spannkraft Berechnungsformel $\times 1$ (kN) $F = (P-2.00) / (2.60 + 0.0059 \times L)$											
Hydraulischer	Zylinderkraft		Spannkraft (kN) Nicht nutzbarer Bereich(III)								
Druck			Hebellänge L (mm)								
(MPa)		L=50	L=60	L=70	L=80	L=90	L=100	L=120	L=150	(mm)	
35	13.73	11.4	11.2							68	
32.5	12.69	10.6	10.4	10.2						75	
30	11.64	9.7	9.5	9.3	9.2					83	
27.5	10.60	8.9	8.7	8.5	8.4	8.2				93	
25	9.56	8.0	7.8	7.7	7.5	7.4	7.3			105	
22.5	8.52	7.1	7.0	6.9	6.7	6.6	6.5	6.2		122	
20	7.47	6.3	6.1	6.0	5.9	5.8	5.7	5.5		144	
17.5	6.43	5.4	5.3	5.2	5.1	5.0	4.9	4.7	4.5	177	
15	5.39	4.5	4.5	4.4	4.3	4.2	4.1	4.0	3.8	228	
12.5	4.35	3.7	3.6	3.5	3.5	3.4	3.3	3.2	3.1	250	
10	3.30	2.8	2.8	2.7	2.7	2.6	2.6	2.5	2.3	250	
7	2.05	1.8	1.7	1.7	1.7	1.6	1.6	1.6	1.5	250	
Max. Betriebsdruck (MPa) 35.0 35.0 34.4 30.9 28.1 26.0 22.7 19.5											


Hydraulischer Druck (MPa)	TLA2002-1 Spannkraft Berechnungsformel **1 (kN) $F = (P - 2.01) / (1.77 + 0.0036)$										
(MPa) L=60 L=70 L=80 L=100 L=120 L=140 L=160 L=180 (mm) 35 20.11 16.7 16.4 16.1 81 81 32.5 18.58 15.4 15.1 14.9 89 89 30 17.05 14.1 13.9 13.7 99 99 27.5 15.51 12.9 12.7 12.4 12.0 110 110 25 13.98 11.6 11.4 11.2 10.8 10.5 12.6 126 20 10.91 9.1 8.9 8.8 8.5 8.2 8.0 7.7 173 17.5 9.38 7.8 7.7 7.6 7.3 7.1 6.9 6.7 6.5 213 15 7.85 6.6 6.5 6.4 6.1 5.9 5.8 5.6 5.4 277 12.5 6.31 5.3 5.2 5.1 5.0 4.8	Hydraulischer	Zylinderkraft		Spannkraft (kN) Nicht nutzbarer Bereich(■)							Max. Hebel-
35 20.11 16.7 16.4 16.1 81 32.5 18.58 15.4 15.1 14.9 89 30 17.05 14.1 13.9 13.7 99 27.5 15.51 12.9 12.7 12.4 12.0 110 25 13.98 11.6 11.4 11.2 10.8 10.5 126 22.5 12.45 10.4 10.2 10.0 9.7 9.4 9.1 145 20 10.91 9.1 8.9 8.8 8.5 8.2 8.0 7.7 173 17.5 9.38 7.8 7.7 7.6 7.3 7.1 6.9 6.7 6.5 213 15 7.85 6.6 6.5 6.4 6.1 5.9 5.8 5.6 5.4 27 12.5 6.31 5.3 5.2 5.1 5.0 4.8 4.7 4.5 4.4 280 10	Druck	k (kN)									länge (L)
32.5 18.58 15.4 15.1 14.9 89 30 17.05 14.1 13.9 13.7 99 27.5 15.51 12.9 12.7 12.4 12.0 11.6 25 13.98 11.6 11.4 11.2 10.8 10.5 12.6 22.5 12.45 10.4 10.2 10.0 9.7 9.4 9.1 145 20 10.91 9.1 8.9 8.8 8.5 8.2 8.0 7.7 173 17.5 9.38 7.8 7.7 7.6 7.3 7.1 6.9 6.7 6.5 213 15 7.85 6.6 6.5 6.4 6.1 5.9 5.8 5.6 5.4 277 12.5 6.31 5.3 5.2 5.1 5.0 4.8 4.7 4.5 4.4 280 10 4.78 4.1 4.0 3.9 3.8 3.7 3.6	(MPa)	MPa)		L=70	L=80	L=100	L=120	L=140	L=160	L=180	(mm)
30 17.05 14.1 13.9 13.7 99 27.5 15.51 12.9 12.7 12.4 12.0 11.0 110 25 13.98 11.6 11.4 11.2 10.8 10.5 126 22.5 12.45 10.4 10.2 10.0 9.7 9.4 9.1 145 20 10.91 9.1 8.9 8.8 8.5 8.2 8.0 7.7 173 17.5 9.38 7.8 7.7 7.6 7.3 7.1 6.9 6.7 6.5 213 15 7.85 6.6 6.5 6.4 6.1 5.9 5.8 5.6 5.4 277 12.5 6.31 5.3 5.2 5.1 5.0 4.8 4.7 4.4 280 10 4.78 4.1 4.0 3.9 3.8 3.7 3.6 3.5 3.4 280	35	20.11	16.7	16.4	16.1						81
27.5 15.51 12.9 12.7 12.4 12.0 110 110 25 13.98 11.6 11.4 11.2 10.8 10.5 126 126 22.5 12.45 10.4 10.2 10.0 9.7 9.4 9.1 145 20 10.91 9.1 8.9 8.8 8.5 8.2 8.0 7.7 173 17.5 9.38 7.8 7.7 7.6 7.3 7.1 6.9 6.7 6.5 213 15 7.85 6.6 6.5 6.4 6.1 5.9 5.8 5.6 5.4 277 12.5 6.31 5.3 5.2 5.1 5.0 4.8 4.7 4.5 4.4 280 10 4.78 4.1 4.0 3.9 3.8 3.7 3.6 3.5 3.4 280	32.5	18.58	15.4	15.1	14.9						89
25 13.98 11.6 11.4 11.2 10.8 10.5 126 22.5 12.45 10.4 10.2 10.0 9.7 9.4 9.1 145 20 10.91 9.1 8.9 8.8 8.5 8.2 8.0 7.7 173 17.5 9.38 7.8 7.7 7.6 7.3 7.1 6.9 6.7 6.5 213 15 7.85 6.6 6.5 6.4 6.1 5.9 5.8 5.6 5.4 277 12.5 6.31 5.3 5.2 5.1 5.0 4.8 4.7 4.5 4.4 280 10 4.78 4.1 4.0 3.9 3.8 3.7 3.6 3.5 3.4 280	30	17.05	14.1	13.9	13.7						99
22.5 12.45 10.4 10.2 10.0 9.7 9.4 9.1 145 20 10.91 9.1 8.9 8.8 8.5 8.2 8.0 7.7 173 17.5 9.38 7.8 7.7 7.6 7.3 7.1 6.9 6.7 6.5 213 15 7.85 6.6 6.5 6.4 6.1 5.9 5.8 5.6 5.4 277 12.5 6.31 5.3 5.2 5.1 5.0 4.8 4.7 4.5 4.4 280 10 4.78 4.1 4.0 3.9 3.8 3.7 3.6 3.5 3.4 280	27.5	15.51	12.9	12.7	12.4	12.0					110
20 10.91 9.1 8.9 8.8 8.5 8.2 8.0 7.7 173 17.5 9.38 7.8 7.7 7.6 7.3 7.1 6.9 6.7 6.5 213 15 7.85 6.6 6.5 6.4 6.1 5.9 5.8 5.6 5.4 277 12.5 6.31 5.3 5.2 5.1 5.0 4.8 4.7 4.5 4.4 280 10 4.78 4.1 4.0 3.9 3.8 3.7 3.6 3.5 3.4 280	25	13.98	11.6	11.4	11.2	10.8	10.5				126
17.5 9.38 7.8 7.7 7.6 7.3 7.1 6.9 6.7 6.5 213 15 7.85 6.6 6.5 6.4 6.1 5.9 5.8 5.6 5.4 277 12.5 6.31 5.3 5.2 5.1 5.0 4.8 4.7 4.5 4.4 280 10 4.78 4.1 4.0 3.9 3.8 3.7 3.6 3.5 3.4 280	22.5	12.45	10.4	10.2	10.0	9.7	9.4	9.1			145
15 7.85 6.6 6.5 6.4 6.1 5.9 5.8 5.6 5.4 277 12.5 6.31 5.3 5.2 5.1 5.0 4.8 4.7 4.5 4.4 280 10 4.78 4.1 4.0 3.9 3.8 3.7 3.6 3.5 3.4 280	20	10.91	9.1	8.9	8.8	8.5	8.2	8.0	7.7		173
12.5 6.31 5.3 5.2 5.1 5.0 4.8 4.7 4.5 4.4 280 10 4.78 4.1 4.0 3.9 3.8 3.7 3.6 3.5 3.4 280	17.5	9.38	7.8	7.7	7.6	7.3	7.1	6.9	6.7	6.5	213
10 4.78 4.1 4.0 3.9 3.8 3.7 3.6 3.5 3.4 280	15	7.85	6.6	6.5	6.4	6.1	5.9	5.8	5.6	5.4	277
11 11 11 11 11 11 11 11 11 11 11 11 11	12.5	6.31	5.3	5.2	5.1	5.0	4.8	4.7	4.5	4.4	280
7 204 26 25 25 24 23 22 22 21 280	10	4.78	4.1	4.0	3.9	3.8	3.7	3.6	3.5	3.4	280
7 2.54 2.0 2.3 2.3 2.4 2.3 2.2 2.2 2.1 200	7	2.94	2.6	2.5	2.5	2.4	2.3	2.2	2.2	2.1	280
Max. Betriebsdruck (MPa) 35.0 35.0 35.0 29.7 25.8 23.1 21.1 19.5	Max. Betriel	osdruck (MPa)	35.0	35.0	35.0	29.7	25.8	23.1	21.1	19.5	

TLA2502-1 Spannkraft Berechnungsformel **1 (kN) F = (P - 1.99) / (1.32 + 0.0021)											
Hydraulischer	Zylinderkraft			Spannk	raft (kN)	Nicht nu	ıtzbarer Be	ereich(III)	Max. Hebel-	
Druck	(kN)		Hebellänge L (mm)								
(MPa)		L=70	L=80	L=90	L=100	L=120	L=140	L=160	L=200	(mm)	
35	27.01	22.6	22.2	21.9	21.6					100	
32.5	24.96	20.8	20.6	20.3	20.0					109	
30	22.91	19.1	18.9	18.6	18.4	17.9				121	
27.5	20.86	17.4	17.2	17.0	16.7	16.3				135	
25	18.81	15.7	15.5	15.3	15.1	14.7	14.3			154	
22.5	16.76	14.0	13.8	13.6	13.5	13.1	12.8	12.4		178	
20	14.71	12.3	12.2	12.0	11.8	11.5	11.2	10.9	10.4	211	
17.5	12.66	10.6	10.5	10.3	10.2	9.9	9.7	9.4	9.0	258	
15	10.61	8.9	8.8	8.7	8.6	8.3	8.1	7.9	7.5	300	
12.5	8.56	7.2	7.1	7.0	6.9	6.7	6.6	6.4	6.1	300	
10	6.51	5.5	5.4	5.4	5.3	5.1	5.0	4.9	4.7	300	
7	4.05	3.5	3.4	3.4	3.3	3.2	3.2	3.1	2.9	300	
Max. Betriel	bsdruck (MPa)	35.0	35.0	35.0	35.0	30.2	26.8	24.3	20.7		

TLA400	TLA4002-1 Spannkraft Berechnungsformel $\times 1$ (kN) $F = (P-2.09) / (0.87 + 0.0012 \times 1)$										
Hydraulischer	Zylinderkraft		9	Spannk	raft (kN)	Nicht nu	ıtzbarer Be	ereich(III)	Max. Hebel-	
Druck	(kN)		Hebellänge L (mm)								
(MPa)		L=85	L=100	L=125	L=150	L=175	L=200	L=225	L=250	(mm)	
35	40.64	33.9	33.3	32.3						138	
32.5	37.55	31.3	30.8	29.9	29.0					152	
30	34.45	28.8	28.2	27.4	26.6					168	
27.5	31.36	26.2	25.7	25.0	24.2	23.6				189	
25	28.27	23.6	23.2	22.5	21.9	21.3	20.7			216	
22.5	25.18	21.0	20.7	20.1	19.5	18.9	18.4	18.0	17.5	252	
20	22.08	18.5	18.1	17.6	17.1	16.6	16.2	15.8	15.4	301	
17.5	18.99	15.9	15.6	15.2	14.7	14.3	13.9	13.6	13.2	350	
15	15.90	13.3	13.1	12.7	12.3	12.0	11.7	11.4	11.1	350	
12.5	12.81	10.8	10.6	10.3	10.0	9.7	9.4	9.2	8.9	350	
10	9.71	8.2	8.0	7.8	7.6	7.4	7.2	7.0	6.8	350	
7	6.00	5.1	5.0	4.9	4.7	4.6	4.5	4.4	4.2	350	
Max. Betriel	Max. Betriebsdruck (MPa)		35.0	35.0	32.8	29.1	26.4	24.3	22.6		

5 10 15 20 25 30 35 Hydraulischer Versorgungsdruck (MPa)

25

Pneumatik-Serie

High-Power-

Ventile/Kupplung Hvdraulikeinheit

Manuelle Produkte Zubehör

Hinweise/Sonstiges

Bohrungsspanne SFA SFC

LHA LHC LHS LHW LT/LG TLA-2 TI B-2 TLA-1

Hebelspanner LKA LKC LKW LM/LJ TMA-2 TMA-1

LD TNC TC Zylinder mit Positionsabfrage LLW

Kompaktzylinde LLR LLU DR

_=70(s=30)

L=120(s=80)

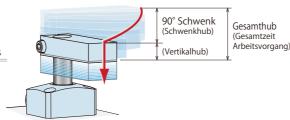
Blockzylinde DBA

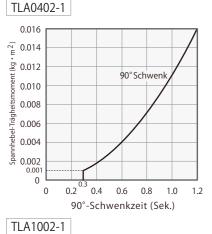
DBC Regelventil BZL BZT BZX/JZG

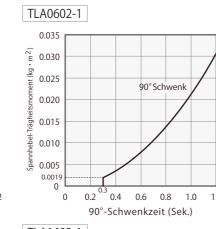
Spannsystem ٧S VT Hydraulischer

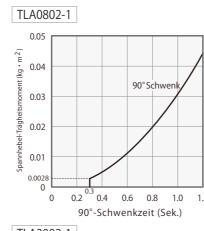
VM ٧J ٧K Niederzug-Spannelemen

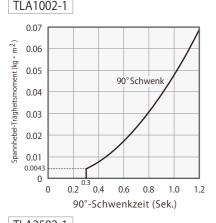
FQ Kundenspezifischer

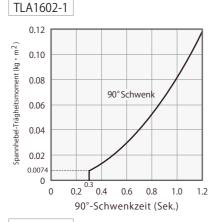

Modell

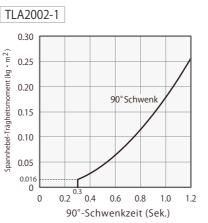

Diagramm zulässige Schwenkzeit

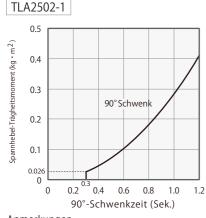

Einstellung der Schwenkzeit

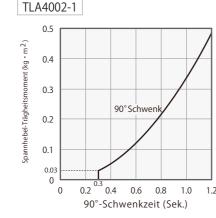

Das Diagramm zeigt die zulässige Schwenkzeit im Vergleich zum Trägheitsmoment des Hebels. Stellen Sie sicher, dass die Dauer des Arbeitsvorgangs länger als die im Diagramm dargestellte Zeit ist.


Eine zu hohe Funktionsgeschwindigkeit kann die Positionsgenauigkeit verringern und innenliegende Teile beschädigen.



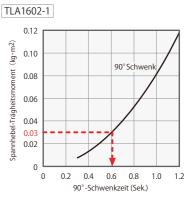






Anmerkungen

- 1. Das Diagramm zeigt das Verhältnis der 90°-Schwenkzeit zum Trägheitsmoment des Hebels.
- 2. Die Gesamtzeit des Schwenkhubs entspricht etwa 2 bis 2,5 Mal der 90°-Schwenkzeit.
- 3. Es kann vorkommen, dass es bei großer Trägheit je nach hydraulischem Versorgungsdruck, Durchfluss und Schwenkhebelmontageposition keine Schwenkhebelfunktion gibt.
- 4. Stellen Sie die Schwenkzeit mindestens auf die in den Diagrammen für das Trägheitsmoment angegebenen Werte ein.
- 5. Eine zu hohe Geschwindigkeit kann zu einer Verschlechterung der Winkelgenauigkeit und Schäden an innenliegenden Teilen führen.
- 6. Die Spannkraft variiert je nach Spannhebellänge. Wählen Sie den passenden Betriebsdruck aus dem angegebenen Spannkraftbereich.
- 7. Bei horizontaler Montage des Spanners kann es vorkommen, dass der Hebel durch sein eigenes Gewicht die Schwenkgeschwindigkeit auf einen Wert über das erlaubte Maß hinaus erhöht. Fügen Sie in diesem Fall ein Geschwindigkeitsregelventil hinzu.
- 8. Die Lösezeit sollte mindestens 0.3 Sekunden betragen.
- 9. Kontaktieren Sie uns, wenn die Betriebsbedingungen von den in den Diagrammen abgebildeten abweichen.

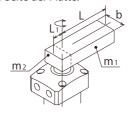

(Interpretation des Diagramms der zulässigen Schwenkzeit) Bei Verwendung von TLA1602-1

Trägheitsmoment des Spannhebels: 0.03kg·m²

• 90°-Schwenkzeit : Ungefähr 0.61 Sek. oder länger

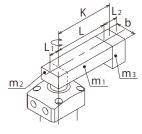
• Gesamtzeit Arbeitsvorgang : Ungefähr 1.44 Sek. oder länger

1. Die Gesamtzeit im Diagramm bildet die zulässige Zeit des Arbeitsvorganges im Gesamthub ab. (Schwenkhub: 9.5 mm, Gesamthub: 22.5 mm)



Berechnung des Trägheitsmoments (geschätzt)

I:Trägheitsmoment (kg·m²) L,L1,L2,K,b:Länge(m)


m₁,m₂,m₃:Masse(kg)

1) Bei einer rechteckigen Platte (Quader) st die Welle vertikal auf einer Seite der Platte

$$= m_1 \; \frac{4L^2 + b^2}{12} \; + m_2 \; \frac{4L_1^2 + b^2}{12}$$

② Die Last wird am Kopfende des Hebels aufgebracht.

$$I = m_1 \frac{4L^2 + b^2}{12} + m_2 \frac{4L_1^2 + b^2}{12} + m_3 K^2 + m_3 \frac{L_2^2 + b^2}{12}$$

Berechnungsformel für die Gesamtzeit des Arbeitsvorganges

Gesamtzeit des Arbeitsvorganges (Sek.) = 90°- Schwenkzeit (Sek.) ×

Gesamthub (mm) Schwenkhub (mm) High-Power-

Pneumatik-Serie

Ventile/Kupplung Hydraulikeinheit

Manuelle Produkte Zubehör

Hinweise/Sonstiges

Bohrungsspanner SFA SFC

LHA

LHC LHS LHW LT/LG TLA-2 TI B-2

Hebelspanner

LKA

LKC

LKW LM/L TMA-2 TMA-1

Abstützelement LD TNC TC

Zylinder mit Positionsabfrage LLW

Kompaktzylinde

LLR LLU DP DR DS DT

Blockzylinder DBA

DBC Regelventil BZL

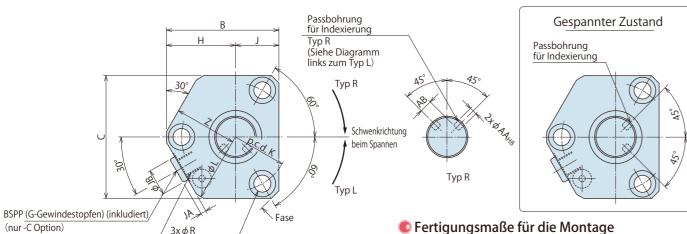
BZT BZX/JZG

Spannsystem ٧S VT

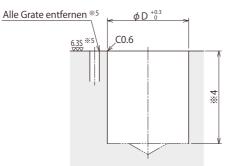
Hydraulischer

VM ٧J ٧K

Niederzug-Spannelement


FQ Kundenspezifischer

Abmessungen


(nur -C Option)

C: O-Ring-Anschluss (mit G-Gewindestopfen)

*Die Zeichnung zeigt TLA-1CL im gelösten Zustand.

Planfläche *ϕ* Q 3xCA Schraube **3 Hydraulikanschluss: G-Gewinde **2 (nur für -C Option: Anschluss Geschwindigkeitsregelventil) Ny **5 φU Hydraulikanschluss φ P **5

Anmerkungen

- *3. Die Gewindetiefe CA sollte so berechnet werden, dass die Befestigungsschrauben mindestens 1.5 x den Schraubendurchmesser in die Vorrichtung eingreifen.
- %4. Die Tiefe der Montagebohrung ϕD sollte entsprechend der Abmessung F festgelegt werden.
- %5. Dieser Vorgang zeigt -C:O-Ring-Anschluss.

Anschlussmethode

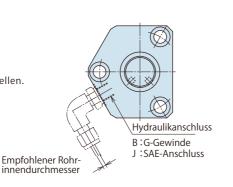
B: G-Gewinde Rohrleitungsanschluss

J: SAE-Anschluss

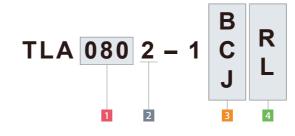
**Die Zeichnung zeigt TLA-1BL / TLA-1JL im gelösten Zustand.

Anmerkungen

Sperrventil


(nur -C Option)

Hydraulikanschluss: O-Ring (inkludiert)


- *1. Befestigungsschrauben sind nicht im Lieferumfang enthalten. Diese sind vom Kunden basierend auf den Abmessungen "S" bereitzustellen.
- ※2. Geschwindigkeitsregelventil separat erhältlich. Sehen Sie ein solches unter Bezugnahme auf S. 727 vor.

potog

1. Stellen Sie einen Schwenkhebel und Befestigungsschrauben wie auf S. 443 und S. 444 gezeigt bereit.

Modell Nr. Bezeichnung

(Formatbeispiel: TLA0802-1CR、TLA1602-1BL)

1 Baugröße (Spannkraft)

3 Anschlussmethode

4 Schwenkrichtung beim Spannen

2 Konstruktionsnummer

Abmessungen und Fertigungsmaße für die Montage

Mode	ell Nr.	TLA0402-1 🗆	TLA0602-1	TLA0802-1 🗆	TLA1002-1□□	TLA1602-1□□	(m
Gesan		16	17.5	17.5	18.5	22.5	25
Schwenkl		8	9.5	7.5	8.5	9.5	12
Vertik		8	8	10	10	13	13
Vertile A		114.5	123	136	149	173.5	194
		44	48	50.5	59.5	62	76.5
		45	52	54	65	68	83
		28.5	33	36	43	46	56
		77.5	81.5	91.5	98.5	115	127
		53.5	56.5	66.5	70.5	85	90
F		61	66.5	69.5	78.5	88.5	104
(24	25	25	28	30	37
ŀ		28.5	30	31.5	36.5	38	46.5
	1						
		15.5	18	19	23	24	30
	(40	45	48	57	60	73.5
I		57	60	63	73	76	93
٨		10	10	10	10	10	13
N		13.5	15	16	18	20	22
N	•	16	17.5	18.5	22	22	28
F		3	3	3	3	3	5
(9	11	11	14	14	17.5
F		5.5	6.8	6.8	9	9	11
9		14.5	14	14	14.5	16	19.5
		18	19.5	19.5	20.5	24.5	27
l		14	16	18	22	25	30
\	/	19	22	25	30	34	40
V	V	27.5	30.5	32	35.5	41.5	47
)	(9.5	11	12.5	15	17	20
١	1	12.5	14	16	19.5	22	26
Z	7	27	28.5	30	33	35	44
Α	A	3 +0.014	4 +0.018	4 +0.018	4 +0.018	4 +0.018	6 +0.018
Α	В	4	4	5	7	8.5	9
Α	C	3.5	4.5	4.5	4.5	5	6.5
(Gewinde	× Steigung)	M5×0.8	M6×1	M6×1	M8×1.25	M8×1.25	M10×1.5
J	A	3	3	3	3	3	3.5
J	В	14	14	14	14	14	19
Fa	se	3	(\phi 60)	(φ63)	(φ73)	(φ76)	(φ93)
raulik-	-B/-C Option	G1/8	G1/8	G1/8	G1/8	G1/8	G1/4
hluss	-J Option	SAE2	SAE2	SAE2	SAE2	SAE2	SAE4
ing	-C Option	1BP5	1BP5	1BP5	1BP5	1BP5	1BP7
-	oolzen (inkludiert)	ϕ 3×6 (Klasse B)	φ4×8 (Klasse B)	φ4×8 (Klasse B)	φ4×8 (Klasse B)	φ4×8 (Klasse B)	ϕ 6×12 (Klasse
	nendurchmesser	φ6	φ6	φ6	φ6	φ6	φ8
			2.5	3.5	5.2	-	15.3
nnen Zylind	ervolumen cm ³ l	1.6	2.5	3.5	5.2	9.4	15.5

**6. Masse eines Einzelschwenkspanners einschließlich Konushülse und Mutter. Anmerkung

Pneumatik-Serie

High-Power-

Ventile/Kupplung Hydraulikeinheit

Manuelle Produkte Zubehör

Hinweise/Sonstiges

Bohrungsspanner SFA SFC

> LHA LHC LHS

LHW LT/LG TLA-2 TI B-2 TLA-1

Hebelspanner LKA LKC LKW LM/LJ TMA-2 TMA-1

TNC TC Zylinder mit Positionsabfrage LLW

Abstützelemen

LD

Kompaktzylinde LLR LLU

DP DR DS DT

Blockzylinder DBA DBC

Regelventil BZL BZT BZX/JZG Nullpunkt-Spannsystem

٧S VT Hydraulischer

VM ٧J ٧K Niederzug-Spannelement

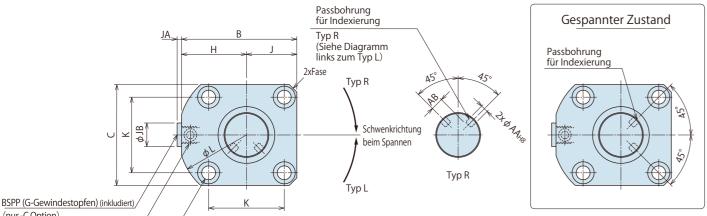
FQ

Kundenspezifischer DWA/DWB

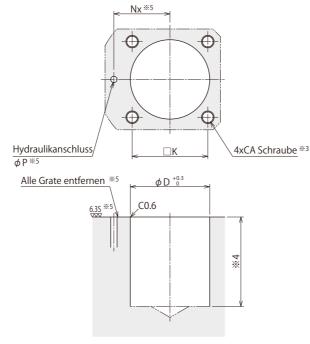
Abmessungen

(nur -C Option)

Hydraulikanschluss: G-Gewinde **


(nur für -C Option: Anschluss Geschwindigkeitsregelventil)

C: O-Ring-Anschluss (mit G-Gewindestopfen)


*Die Zeichnung zeigt TLA-1CL im gelösten Zustand.

/4x φ R

Planfläche φ Q

Fertigungsmaße für die Montage

Anmerkungen

- *3. Die Gewindetiefe CA sollte so berechnet werden, dass die Befestigungsschrauben mindestens 1.5 x den Schraubendurchmesser in die Vorrichtung eingreifen.
- %4. Die Tiefe der Montagebohrung ϕD sollte entsprechend der Abmessung F festgelegt werden.
- %5. Dieser Vorgang zeigt -C:O-Ring-Anschluss.

Anschlussmethode

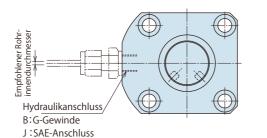
B: G-Gewinde Rohrleitungsanschluss

J: SAE-Anschluss

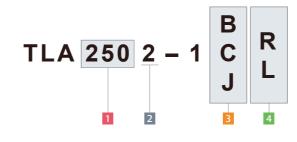
**Die Zeichnung zeigt TLA-1BL / TLA-1JL im gelösten Zustand.

Anmerkungen

Sperrventil


Hydraulikanschluss: O-Ring (inkludiert)

(nur Typ -C)


*1. Befestigungsschrauben sind nicht im Lieferumfang enthalten. Diese sind vom Kunden basierend auf den Abmessungen "S" bereitzustellen.

 $\phi D^{-0.1}_{-0.2}$

- *2. Geschwindigkeitsregelventil separat erhältlich. Sehen Sie ein solches unter Bezugnahme auf S. 727 vor.
- 1. Stellen Sie einen Schwenkhebel und Befestigungsschrauben wie auf S. 443 und S. 444 gezeigt bereit.

Modell Nr. Bezeichnung

1 Baugröße (Spannkraft)

3 Anschlussmethode

4 Schwenkrichtung beim Spannen

Abmessungen und Fertigungsmaße für die Montage

Mode	ell Nr.	TLA2502-1□□	TLA4002-1□□		
Gesar	nthub	29.5	33		
Schwenk	hub (90°)	13.5	17		
Vertik	alhub	16	16		
,	A	224	254.5		
[3	92	114		
(2	80	102		
[)	63	90		
	Ξ	146.5	164.5		
	F	106.5	114.5		
F	u	117.5	140		
(ĵ.	40	50		
ŀ	1	52	63		
	J	40	51		
ŀ	<	60	80		
I	L	108	136		
Λ	Λ	15	17		
N	lx	45	56		
-)	5	5		
(2	17.5	20		
ſ	3	11	14		
9	5	22.5	27.5		
7	Γ	31.5	35		
l	J	35.5	45		
\	/	46	55		
V	V	54.5	62.5		
)	<	23	27.5		
,	Y	31	39.5		
А	A	6 +0.018	8 +0.022		
A	B	11.75	14.5		
А	C	6.5	9		
CA (Gewinde	× Steigung)	M10×1.5	M12×1.75		
J	A	3.5	3.5		
J	В	19	19		
Fa	se	(φ108)	(ø 136)		
Hydraulik-	-B/-C Option	G1/4	G1/4		
anschluss	-J Option	SAE4	SAE4		
O-Ring	-C Option	1BP7	1BP7		
Hebel Mitnehmerk		ϕ 8×16 (Klasse B)			
Empfohlener Rohrir	nnendurchmesser	ϕ 6×12 (Klasse B) ϕ 8	φ8		
•	ervolumen cm ³	24.2	40.8		
Masse *6	kg	4.5	9.5		

%6. Masse eines Einzelschwenkspanners einschließlich Konushülse und Mutter. Anmerkung

(Formatbeispiel: TLA2502-1CR、TLA4002-1BL)

2 Konstruktionsnummer

High-Power-

Ventile/Kupplung Hydraulikeinheit

Pneumatik-Serie

Manuelle Produkte Zubehör

Hinweise/Sonstiges

Bohrungsspanner SFA

SFC

LHA LHC

LHS LHW LT/LG TLA-2

> TI B-2 TLA-1

Hebelspanner

LKA LKC LKW LM/LJ TMA-2 TMA-1

Abstützelemen LD

TNC TC Zylinder mit Positionsabfrage

LLW

Kompaktzylinde LLR

LLU DP DR DS

DT Blockzylinder

DBA DBC

Regelventil BZL BZT BZX/JZG

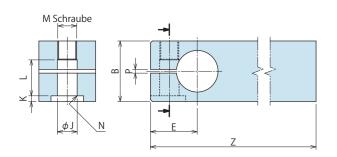
Nullpunkt-Spannsystem ٧S

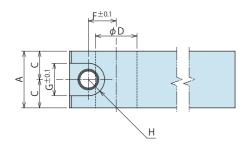
VT Hydraulischer

VM

٧J ٧K

Niederzug-Spannelement


FQ Kundenspezifischer

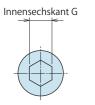

Zubehör : Schwenkhebelmaterial

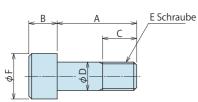
** Beim Design und bei der Herstellung von Schwenkhebeln sind die Montageabmessungen im Diagramm zu berücksichtigen. Die Verwendung anderer Abmessungen als in der Liste angeführt kann bei der Herstellung des Schwenkhebels zu Fehlfunktionen führen, einschließlich einer von der Spezifikation abweichenden Spannkraft, Verformungen und Beschädigungen.

Modell Nr. Bezeichnung

								(mm)
Modell Nr.		TLZ0600-L2	TLZ0800-L2	TLZ1000-L2	TLZ1600-L2	TLZ2000-L2	TLZ2500-L2	TLZ4000-L2
Entsprechendes Modell Nr.	TLA0402-1	TLA0602-1	TLA0802-1	TLA1002-1	TLA1602-1	TLA2002-1	TLA2502-1	TLA4002-1
Α	19	22	25	30	34	40	46	55
В	22	25	26	32	36	45	53	70
С	9.5	11	12.5	15	17	20	23	27.5
D	14 0 -0.016	16 0 -0.016	18 0 -0.016	22 _0_0	25 0 -0.020	30 _0_0	35.5 _{-0.025}	45 0 -0.025
Е	15	18	19	23	26.5	31.5	36.5	46
F	9.25	11	12	14.75	17	20	23.5	29.75
G	11	14	14	17.5	20	23	26	32
Н	5.5	7	7	8.75	10	11.5	13	16
J	6.5	8.5	8.5	10.5	12.5	14.5	16.5	21
K	2	3	3	4	4	5	7	9
L	13.5	15.5	16	18	22	26.5	31	42
М	M6×1	M8×1	M8×1	M10×1.25	M12×1.5	M14×1.5	M16×1.5	M20×2
N	C0.4	C0.6	C0.6	C0.6	C1	C1	C1	C1
Р	2	2	2	2	2	2	2	2
Z	105	120	145	160	170	175	185	220

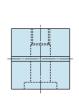
Anmerkungen 1. Material: S50CH

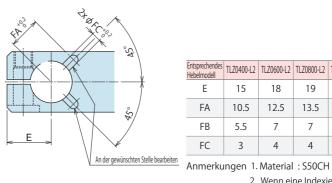

- 2. Falls erforderlich sollte das Kopfende zusätzlich bearbeitet werden.
- 3. Eine Indexierung ist erforderlich.
- Führen Sie eine zusätzliche Bearbeitung anhand der unten
- angegebenen Abmessungen durch.
- 4. Die Befestigungsschraube für den Hebel wird separat angeboten.

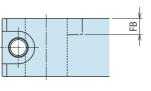

Zubehör : Befestigungsschrauben für Schnellwechselhebel

%Berücksichtigen Sie beim Design und bei der Herstellung der Hebelbefestigungsschraube die Abmessungen in der Abbildung und verwenden Sie Material der Festigkeitsklasse 12.9.

Modell Nr. Bezeichnung




								(mm)
Modell Nr.	TLZ0400-LB	TLZ0600-LB	TLZ0800-LB	TLZ1000-LB	TLZ1600-LB	TLZ2000-LB	TLZ2500-LB	TLZ4000-LB
Entsprechendes Modell Nr.	TLA0402-1	TLA0602-1	TLA0802-1	TLA1002-1	TLA1602-1	TLA2002-1	TLA2502-1	TLA4002-1
Α	20	22	23	28	32	40	46	61
В	6	8	8	10	12	14	16	20
С	7	9	10	11	13	16	18	23
D	6	8	8	10	12	14	16	20
Е	M6×1	M8×1	M8×1	M10×1.25	M12×1.5	M14×1.5	M16×1.5	M20×2
F	10	13	13	16	18	21	24	30
G	5	6	6	8	10	12	14	17


© Fertigungsmaße für die Passbohrung für Indexierung (Referenz)

Leistung

※ Dieser zusätzliche Vorgang gilt für TLA□2-1.

								(mm)
Entsprechendes Hebelmodell	TLZ0400-L2	TLZ0600-L2	TLZ0800-L2	TLZ1000-L2	TLZ1600-L2	TLZ2000-L2	TLZ2500-L2	TLZ4000-L2
E	15	18	19	23	26.5	31.5	36.5	46
FA	10.5	12.5	13.5	15.5	17	21.5	24.2	31
FB	5.5	7	7	7	7.5	10	10	13.5
FC	3	4	4	4	4	6	6	8

2. Wenn eine Indexierung erforderlich ist, berücksichtigen Sie die Schwenkhebel Abmessungen des jeweiligen Modells. Wenn keine Indexierung erforderlich ist, ist die Bearbeitung nicht notwendig.

High-Power-

Pneumatik-Serie

Ventile/Kupplung Hvdraulikeinheit

Manuelle Produkte Zubehör

Hinweise/Sonstiges

Bohrungsspanner

SFA SFC

LHA LHC

LHS LHW LT/LG TLA-2 TIR-2

TLA-1 Hebelspanner

> LKA LKC LKW

LM/LJ TMA-2 TMA-1

Abstützelemen LD

TNC TC Zylinder mit Positionsabfrage

LLW

Kompaktzylinde

LLR LLU DP DR DS

Blockzylinder DBA DBC

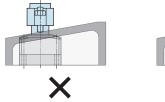
DT

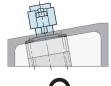
Regelventil BZL BZT BZX/JZG

Nullpunkt-Spannsystem ٧S

VT Hydraulischer

> VM ٧J VK


Niederzug-Spannelement


FQ Kundenspezifischer

Federspeicherzylinde DWA/DWB

Hinweise

- Anmerkungen zur Konstruktion
- 1) Prüfen der Spezifikationen
- Verwenden Sie jedes Produkt gemäß den Spezifikationen.
- 2) Anmerkungen zum Schaltungsdesign
- Bitte lesen Sie die "Hinweise zur Verwendung von hydraulischen Drosselventilen" auf S. 1044 als Hilfestellung für das richtige Design des Hydraulikplans.
- Stellen Sie sicher, dass kein hydraulischer Druck gleichzeitig auf den Spann- und Lösekreis wirken kann.
- 3) Schwenkhebel mit minimalem Trägheitsmoment konzipieren.
- Ein großes Trägheitsmoment reduziert die Positionsgenauigkeit des Hebels, verursacht übermäßigen Verschleiß am Spanner und möglicherweise eine Fehlfunktion, abhängig vom zugeführten Hydraulikdruck und der Hebelmontageposition.
- Richten Sie die zulässige Betriebszeit nach dem entsprechenden Trägheitsmoment.
 Stellen Sie sicher, dass die zulässige Betriebszeit der Spanner entsprechend dem angegebenen Betriebszeitdiagramm eingehalten wird.
- 4) Bei Verwendung auf einer Schweißvorrichtung sollte die freiliegende Fläche der Kolbenstange geschützt werden.
- Funkenspritzer auf der Gleitfläche könnten zu einer Fehlfunktion und einem Flüssigkeitsaustritt führen.
- 5) Beim Spannen auf einer geneigten Fläche des Werkstücks
- Stellen Sie sicher, dass die Spannfläche und die Montagefläche des Spanners parallel sind.

- 6) Anmerkungen zu LHA-M/N, LHW
- Bei Verwendung eines Schwenkspanners mit Positionsabfrage (LHA-M/N, LHW) ist sicherzustellen, dass die Anmerkungen zur Konstruktion • Montage • Verwendung beachtet werden (nachfolgende Seiten).
 - Schwenkspanner mit Luftsensoroption LHA-M/N: Siehe S. 315.
 - Schwenkspanner mit Positionsabfrageventil LHW: Siehe S. 353.

Einbauhinweise

- 1) Prüfung des Mediums
- Verwenden Sie die entsprechende Hydraulikflüssigkeit laut Liste (S. 1043).

2) Montage des Spanners

Verwenden Sie zur Montage des Spannelements Innensechskantschrauben laut Tabelle unten mit empfohlener Festigkeitsklasse 12.9 und den dementsprechenden Anzugsmomenten. Wird zum Anziehen der Schrauben ein höheres Anzugsmoment als empfohlen verwendet, so könnte das dazu führen, dass die Auflagefläche niedergedrückt wird oder die Schrauben abbrechen.

			I	
M	odell Nr.	Gewindemaß	Anzugsmoment (N·m)	
	LHA0360 / LHS0360	M4×0.7	4.0	
	LHA0400 / LHC0400	M5×0.8	8.0	
	LHS0400 / LHW040□	1415740.0		
	LHA0480 / LHC0480	M5×0.8	8.0	
LHA	LHS0480 / LHW048	1415 / 0.0	0.0	
LHC	LHA0550 / LHC0550	M6×1	14	
LHS	LHS0550 / LHW055	MOXI	14	
LHW	LHA0650 / LHC0650	M6×1	14	
LIIVV	LHS0650 / LHW065	WOXI	14	
	LHA0750 / LHS0750	M8×1.25	33	
	LHW0751	1010 × 1.25	33	
	LHA0900 / LHS0900	M10×1.5	65	
	LHA1050 / LHS1050	M12×1.75	114	
	LT0301 / LG0301	M4×0.7	3.2	
	LT036□ / LG036□	M4×0.7	3.2	
	LT040□ / LG040□	M5×0.8	6.3	
	LT048□ / LG048□	$M5 \times 0.8$	6.3	
LT/LG	LT055□ / LG055□	M6×1	10	
	LT065□ / LG065□	M6×1	10	
	LT075□ / LG075□	M8×1.25	25	
	LG090□	M10×1.5	58.8	
	LG105□	M12×1.75	98	
	TL□040□-□	M5×0.8	6.9	
TLA-2 TLB-2 TLA-1	TL□060□-□	M6×1	11.8	
	TL□080□-□	M6×1	11.8	
	TL□100□-□	M8×1.25	25	
	TL□160□-□	M8×1.25	25	
	TL□200□-□	M10×1.5	58.8	
	TL□250□-□	M10×1.5	58.8	
	TL□400□-□	M12×1.75	98	

- 3) Montage und Demontage des Schwenkhebels
- Die Kontaktflächen von Spannhebel, Konushülse und Kolbenstange sollten öl-, fett- und spänefrei sein.
 Reinigen Sie diese Flächen vor Montage.
- Die Anzugsmomente zur Befestigung des Hebelarms sind unten in der Tabelle zu sehen.

LHA/LHC/LHS/LHW/LT/LG Standard: Spannhülse

Modell Nr.		Gewindemaß	Anzugsmoment (N·m)	
LHA LHC LHS LHW	LHA0360 / LHS0360	M14×1.5	21 ~ 25	
	LHA0400 / LHC0400 LHS0400 / LHW040	M16×1.5	33 ~ 40	
	LHA0480 / LHC0480 LHS0480 / LHW048	M20×1.5	54 ~ 65	
	LHA0550 / LHC0550 LHS0550 / LHW055	M22×1.5	84 ~ 100	
	LHA0650 / LHC0650 LHS0650 / LHW065	M27×1.5	120 ~ 145	
	LHA0750 / LHS0750 LHW0751	M30×1.5	175 ~ 210	
	LHA0900 / LHS0900	M39×1.5	280 ~ 335	
	LHA1050 / LHS1050	M48×1.5	333 ~ 400	
LT/LG	LT0301 / LG0301	M8×1	8 ~ 10	
	LT036□ / LG036□	M10×1	15 ~ 18	
	LT040□ / LG040□	M12×1.5	24 ~ 29	
	LT048 / LG048	M16×1.5	37 ∼ 45	
	LT055 / LG055	M18×1.5	59 ~ 71	
	LT065□ / LG065□	M22×1.5	93 ~ 112	
	LT075 / LG075	M28×1.5	147 ~ 177	
	LG090□	M36×1.5	235 ~ 282	
	LG105□	M45×1.5	300 ∼ 360	

LHA/LHS-F Schnellwechselhebel, TLA-2/TLB-2/TLA-1 Standard

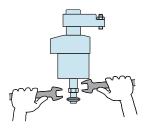
Modell Nr.		Gewindemaß	Anzugsmoment (N·m)
LHA–F LHS–F LT–F LG–F	LT0301-F / LG0301-F	M5×0.8	7.5
	LHA0360-F / LHS0360-F LT036 -F / LG036 -F	M6	14
	LHA0400-F / LHS0400-F LT040	M8×1	33
	LHA0480-F / LHS0480-F LT048 - F / LG048 - F	M10×1.25	65
	LHA0550-F / LHS0550-F LT055	M12×1.5	100 ~ 114
	LHA0650-F / LHS0650-F LT065 - F / LG065 - F	M14×1.5	160 ~ 180
	LHA0750-F / LHS0750-F LT075□-F / LG075□-F	M16×1.5	250 ~ 280
	LHA0900-F / LHS0900-F LG090□-F	M20×2	500 ~ 540
	LHA1050-F / LHS1050-F LG105□-F	M24×2	760 ~ 810
	TL□040□-□	M6	13
TLA-2 TLB-2 TLA-1	TL□060□-□	M8×1	32
	TL□080□-□	M8×1	32
	TL□100□-□	M10×1.25	63
	TL□160□-□	M12×1.5	100
	TL□200□-□	M14×1.5	160
	TL□250□-□	M16×1.5	250
	TL□400□-□	M20×2	500

 Die Kolbenstange des Spannelements darf niemals mit einem Drehmoment belastet werden. Dies führt unverzüglich zu einer Beschädigung innenliegender Führungen. Befolgen Sie folgende Schritte.

Montage

 Bei Montage des Spannelements auf der Vorrichtung die Hebelposition bestimmen und vorab nur minimal durch Anziehen der Mutter gegen Verdrehung sichern.

②Entfernen Sie das Spannelement von der Vorrichtung, fixieren Sie den Spannhebel in einem Schraubstock und ziehen Sie die Mutter fest. ③Wenn das Spannelement zum endgültigen Anziehen nicht von der Vorrichtung entfernt werden kann, sichern Sie den Hebel, während Sie die Mutter festziehen.
Bringen Sie den Spannhebel in die Position zwischen gespannt und gelöst, bevor Sie die Mutter anziehen.


Demontage

① Während das Spannelement in der Vorrichtung oder im Schraubstock eingespannt ist, verwenden Sie einen Sechskantschlüssel, um den Hebelarm in die Position zwischen gespannt und gelöst zu bringen, und lösen Sie dann die Mutter.

② Nach dem Lösen und Entfernen der Konushülsenmutter den Spannhebel mittels eines Abziehers durch zwei oder drei Umdrehungen von der Kolbenstange abziehen. Die Kolbenstange des Spannelements darf niemals mit einem Drehmoment belastet werden.

4) Einstellen der Schwenkgeschwindigkeit

- Einstellen der Geschwindigkeit laut dem "Diagramm zulässige Schwenkzeit". Zu hohe Schwenkgeschwindigkeiten verursachen einen übermäßigen Verschleiß der Teile und möglicherweise eine Fehlfunktion oder vorzeitige Schäden.
- Vor der Geschwindigkeitseinstellung muss der Spanner entlüftet werden. Es ist nicht möglich, eine präzise Geschwindigkeitsregulierung zu erreichen, wenn sich Luft im Kreis befindet.
- Starten Sie mit der geringsten Durchflussmenge am Geschwindigkeitsregelventil und steigern Sie diese allmählich.
- 5) Prüfen des Spiels und Nachziehen
- Zu Beginn der Montage können die Schraube und Mutter leicht angezogen werden. Prüfen Sie das Spiel und ziehen Sie diese erforderlichenfalls nach.
- 6) Anmerkungen zur durchgehenden Kolbenstange (-D) für den Watchdog
- Richten Sie bei der Anbringung des Watchdog den Kolben so ein, dass er sich nicht dreht. Sichern Sie den Watchdog oder die Führungsnut und vermeiden Sie jegliche Rotationen oder Anzugsmomente auf der Kolbenstange. Die Anzugsmomente für die Befestigungsschrauben sind in der Tabelle unten dargestellt.

Modell Nr.	Gewindemaß	Anzugsmoment (N·m)
LHA0360-□□D	M4×0.7	3.2
LHA0400-□□D	M6×1	10
LHA0480-□□D	M8×1.25	25
LHA0550-□□D	M8×1.25	25
LHA0650-□□D	M8×1.25	25
LHA0750-□□D	M10×1.5	50
LHA0900-□□D	M10×1.5	50
LHA1050-□□D	M10×1.5	50

High-Power-Serie

Pneumatik-Serie

Hydraulik-Serie

Ventile/Kupplung Hydraulikeinheit

Manuelle Produkte Zubehör

Hinweise/Sonstiges

Bohrungsspanner

SFA

SFC

ichwenkspanner

LHA
LHC
LHS
LHW
LT/LG
TLA-2
TLB-2
TLA-1

LKA
LKC
LKW

LM/LJ TMA-2 TMA-1

Abstützelement LD

TNC TC

Zylinder mit Positionsabfrage LLW

Community - Product

Kompaktzylinder

LL

LLR

LLU

DP

DR

DS

DT

Blockzylinder

DBA

DBC

Regelventil

BZL

BZT

BZX/JZG

NullpunktSpannsystem

VS VT Hydraulischer

Positionszylinder

VL

VM

VJ

VK

Niederzug-Spannelement

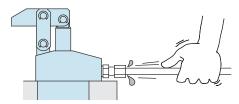
FQ
Kundenspezifischer
Federspeicherzylinder

- ise.
- Hinweise zur Verwendung von hydraulischen Drosselventilen
- Liste Hydraulikflüssigkeiten Hinweise zum Umgang Wartung/Inspektion Garantie

Hinweise

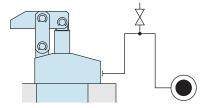
Einbauhinweise (Für Hydraulik-Serie)

- 1) Prüfung des Mediums
- Verwenden Sie die entsprechende Hydraulikflüssigkeit laut Liste.
- 2) Vorgehen vor der Verrohrung
- Die Rohrleitung, der Rohrleitungsanschluss und der Medienkanal sind durch gründliches Spülen zu reinigen.
- Staub und Späne im Kreis könnten zu einem Auslaufen der Flüssigkeit und einer Funktionsstörung führen.
- Kosmek stellt keine Filter für seine Produkte zur Verfügung, mit Ausnahme von Ventilteilen, die verhindern, dass Fremdkörper und Verunreinigungen in den Kreis gelangen.


Liste Hydraulikflüssigkeiten

ISO Viskositätsklasse ISO-Vi			
Hersteller	Hydrauliköl mit Verschleißschutz	Mehrzweck-Hydrauliköl	
Showa Shell Sekiyu	Tellus S2 M 32	Morlina S2 B 32	
Idemitsu Kosan	Daphne Hydraulic Fluid 32	Daphne Super Multi Oil 32	
JX Nippon Oil & Energy	Super Hyrando 32	Super Mulpus DX 32	
Cosmo Oil	Cosmo Hydro AW32	Cosmo New Mighty Super 32	
ExxonMobil	Mobil DTE 24	Mobil DTE 24 Light	
Matsumura Oil	Hydol AW-32		
Castrol	Hyspin AWS 32		

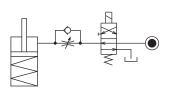
Anmerkung


Da es schwierig sein könnte, die in der Tabelle aufgelisteten Produkte aus dem Ausland zu beschaffen, kontaktieren Sie bitte den entsprechenden Hersteller.

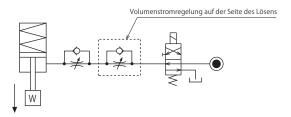
- 3) Anwendung des Dichtungsbands
- Mit dem Band 1 bis 2 Mal im Uhrzeigersinn umwickeln.
- Ein kaputtes Dichtungsband kann zu Ölaustritt und Funktionsstörung führen.
- Um zu vermeiden, dass während der Rohrleitungsarbeiten Fremdkörper in das Produkt gelangen, sollte man vor den Arbeiten eine sorgfältige Reinigung durchführen.
- 4) Entlüften des hydraulischen Kreises
- Wenn sich im hydraulischen Kreis Überschussluft befindet, kann sich die Zykluszeit stark verlängern. Wenn nach dem Anschließen des Hydraulikanschlusses Luft in den Kreis gelangt oder wenn sich keine Luft im Öltank befindet, führen Sie die folgenden Schritte durch.
- ① Reduzieren Sie den hydraulischen Druck auf unter 2 MPa.
- ② Lockern Sie die Überwurfmutter der Rohrverschraubung, die sich am nächsten beim Spannelement befindet, durch eine volle Umdrehung.
- ③ Bewegen Sie die Rohrleitung hin und her, um den Ausgang der Rohrverschraubung zu lösen. Hydraulikflüssigkeit vermischt mit Luft kommt heraus.

- ④ Ziehen Sie die Überwurfmutter nach dem Entlüften fest.
- S Es ist wirksamer, die Entlüftung am höchsten Punkt im Kreis oder am Ende des Kreises durchzuführen.

(Bauen Sie ein Entlüftungsventil am höchsten Punkt im Kreis ein.)


- 5) Prüfen des Spiels und Nachziehen
- Zu Beginn der Maschinenaufstellung können die Schraube und Mutter leicht angezogen werden. Prüfen Sie das Spiel und ziehen Sie sie erforderlichenfalls nach.

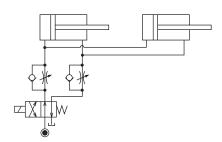
Hinweise zur Verwendung von hydraulischen Drosselventilen



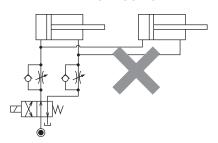
Bitte beachten Sie die nachfolgenden Hinweise. Konzipieren Sie den Hydraulikplan zur Regelung der Funktionsgeschwindigkeit des Hydraulikzylinders. Ein falsches Schaltungsdesign kann zu einer Anwendungsfehlfunktion und Schäden führen. Überprüfen Sie das Schaltungsdesign im Voraus.

 Fluidplan bei Volumenstromregelung für einfachwirkende Zylinder Bei einfachwirkenden Zylindern mit Federrückstellung kann eine Volumenstrombeschränkung während des Lösens den Lösevorgang extrem verlangsamen oder stören. Die bevorzugte Methode ist, den Volumenstrom während des Spannvorgangs mit einem Ventil mit freiem Durchgang in der Löserichtung zu regeln. Es ist auch vorzuziehen, bei jedem Aktuator ein Drosselventil vorzusehen.

Eine beschleunigte Spanngeschwindigkeit durch einen übermäßigen Hydraulikfluss zum Zylinder kann zu Schäden führen. In diesem Fall fügen Sie eine Volumenstromregelung hinzu, um den Volumenstrom zu regeln. (Wenn Schwenkspanner verwendet werden, fügen Sie eine Volumenstromregelung hinzu, um den Volumenstrom freizugeben, wenn das Hebelgewicht während des Lösevorgangs aufgesetzt wird.)

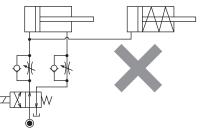


 Fluidplan bei Volumenstromregelung für doppelwirkende Zylinder Die Volumenstromregelung für doppelwirkende Zylinder sollte eine Rücklaufregelung für die Spann- und Löseseite haben. Die Zulaufregelung kann durch vorhandene Luft im System ungünstige Wirkungen haben

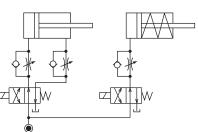

Bei der Regelung von LKE, TMA, TLA sollten jedoch sowohl die Spannseite als auch die Löseseite eine Zulaufregelung sein. Siehe S. 47 zur Geschwindigkeitseinstellung von LKE.

Wird bei TMA und TLA eine Rücklaufregelung verwendet, wird ungewöhnlich hoher Druck aufgebaut, der zu Ölaustritt und Schäden führt.

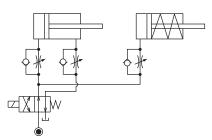
[Rücklaufregelung] (außer LKE/TMA/TLA)



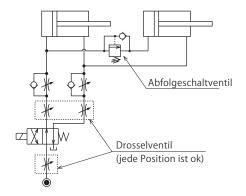
【Zulaufregelung】(LKE/TMA/TLA müssen mit einer Zulaufregelung geregelt werden.)


Im Falle einer Rücklaufregelung sollte der Hydraulikplan mit den folgenden Merkmalen konstruiert sein.

① Einfachwirkende Teile sollten nicht in der gleichen Volumenstromregelung wie die doppelwirkenden Teile verwendet werden. Der Lösevorgang der einfachwirkenden Zylinder könnte unregelmäßig oder sehr langsam werden.



Siehe folgender Plan bei gemeinsamer Verwendung von einfachwirkenden und doppelwirkenden Zylindern.


○ Trennen Sie den Regelkreis.

O Reduzieren Sie den Einfluss der Regeleinheit des doppelwirkenden Zylinders. Aufgrund des Gegendrucks in der Tankleitung wird jedoch der einfachwirkende Zylinder aktiviert, nachdem der doppelwirkende Zylinder arbeitet.

Bei einer Rücklaufregelung kann es vorkommen, dass sich während der Zylindertätigkeit der Druck im Kreis aufgrund der Flüssigkeitszufuhr erhöht. Eine Druckzunahme im Kreis kann durch die vorherige Reduktion der zugeführten Flüssigkeit über das Drosselventil vermieden werden. Dies gilt vor allem bei der Verwendung eines Abfolgeschaltventils oder von Druckschaltern zur Positionsabfrage. Wenn der Gegendruck höher als der Solldruck ist, dann wird das System nicht so funktionieren, wie es konzipiert wurde.

High-Power-Serie

Pneumatik-Serie

Hydraulik-Serie

Ventile/Kupplung Hydraulikeinheit Manuelle Produkte

Zubehör

Wartung/ Inspektion

Garantie

Unternehmensprofil

Unternehmensprofil Unsere Produkte Geschichte

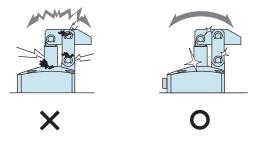
Index

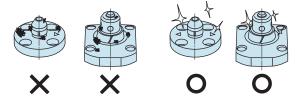
Suche in alphabetische r Reihenfolge

Vertriebsstellen

Hinweise

Hinweise zum Umgang


- 1) Der Umgang mit dem Produkt sollte durch Fachpersonal erfolgen.
- Der Umgang mit und die Wartung der hydraulischen Maschine und des Luftkompressors sollten durch Fachpersonal erfolgen.
- Bedienen oder demontieren Sie die Maschine nur, wenn das Sicherheitsprotokoll gewährleistet wird.
- ① Die Maschine und die Ausrüstung können nur geprüft oder eingestellt werden, wenn bestätigt ist, dass die Schutzeinrichtungen vorhanden sind.
- ② Bevor die Maschine abgebaut wird, stellen Sie sicher, dass die zuvor genannten Sicherheitsvorkehrungen getroffen wurden. Drehen Sie die Luft der Hydraulikquelle ab und stellen Sie sicher, dass im hydraulischen Kreis und im Luftkreislauf kein Druck besteht.
- ③ Nach dem Abstellen der Maschine Teile erst demontieren, wenn die Temperatur abgekühlt ist.
- ④ Stellen Sie sicher, dass es keine Auffälligkeiten bei den Schrauben und entsprechenden Teilen gibt, bevor Sie die Maschine oder Ausrüstung wieder starten.
- Berühren Sie die Spannelemente (Zylinder) nicht, während die Spannelemente (Zylinder) in Betrieb sind. Bei Missachtung kann es zu einer Verletzung der Hände durch Einklemmen kommen.


- 4) Das Gerät nicht zerlegen oder abändern.
- Wenn die Ausrüstung zerlegt oder abgeändert wird, erlischt die Garantie auch innerhalb des Garantiezeitraumes.

Wartung und Inspektion

- 1) Abbau der Maschine und Abschalten der Druckquelle
- Bevor die Maschine abgebaut wird, stellen Sie sicher, dass die zuvor genannten Sicherheitsvorkehrungen getroffen wurden. Drehen Sie die Luft der Hydraulikquelle ab und stellen Sie sicher, dass im hydraulischen Kreis und im Luftkreislauf kein Druck besteht.
- Stellen Sie sicher, dass es keine Auffälligkeiten bei den Schrauben und entsprechenden Teilen gibt, bevor Sie das Gerät wieder starten.
- 2) Reinigen Sie den Bereich um die Kolbenstange und den Bolzen regelmäßig.
- Bei Benutzung mit verschmutzter Oberfläche kann es zu Dichtungsschäden, Fehlfunktionen, Flüssigkeitsaustritt und Luftverlust kommen.

- 3) Reinigen Sie alle Referenzflächen der Positionierungsmaschine regelmäßig. (VS/VT/VL/VM/ VJ/VK/WVS/WM/WK/VX/VXF)
- Positionierungsprodukte, mit Ausnahme des Modells VX/VXF, können durch Reinigungsfunktionen Verunreinigungen entfernen. Beim Einbau von Paletten stellen Sie sicher, dass sich keine dicken, schlammähnlichen Stoffe auf den Paletten befinden.
- Eine regelmäßige Verwendung mit verschmutzten Teilen führt zu nicht einwandfrei funktionierenden Positionierungsfunktionen, Undichtheiten und Fehlfunktionen.

- Beim regelmäßigen Abkuppeln von Kupplungen sollte täglich entlüftet werden, um zu vermeiden, dass Luft in den Kreis gemischt wird.
- Ziehen Sie regelmäßig Muttern, Schrauben, Stifte, Zylinder und die Rohrleitung fest, um die einwandfreie Nutzung zu gewährleisten.
- 6) Stellen Sie sicher, dass die Hydraulikflüssigkeit nicht schlecht geworden ist.
- 7) Stellen Sie sicher, dass das Gerät reibungslos funktioniert und keine ungewöhnlichen Geräusche macht.
- Vergewissern Sie sich vor allem nach einem Neustart nach einer langen Nichtverwendung, dass das Gerät einwandfrei bedient werden kann.
- 8) Die Produkte sollten an einem kühlen, dunklen Ort ohne direkte Sonneneinstrahlung oder Feuchtigkeit gelagert werden.
- 9) Bitte kontaktieren Sie uns für Instandsetzungen und Reparaturen.

Einbauhinweise (Für Hydraulik-Serie) Liste Hydraulikflüssigkeiten Hinweise zur Verwendung von hydraulischen Drosselventilen

Hinweise zum Umgang

Wartung/Inspektion

Garantie

- 1) Garantiezeitraum
- Der Garantiezeitraum für das Produkt beträgt 18 Monate ab Versand von unserem Werk oder 12 Monate ab Erstbenützung, je nachdem was früher eintritt.
- 2) Umfang der Garantie
- Im Falle von Produktschäden oder Funktionsstörungen während des Garantiezeitraums aufgrund von Konstruktionsfehlern, fehlerhaften Materialien oder fehlerhafter Ausführung werden wir das fehlerhafte Teil auf unsere Kosten ersetzen oder reparieren. Defekte oder Schäden, die durch Folgendes verursacht werden, sind nicht gedeckt.
- ① Wenn die vorgeschriebenen Wartungen und Inspektionen nicht durchgeführt werden.
- ② Wenn das Produkt verwendet wird, während es basierend auf der Beurteilung der Bedienperson nicht für den Einsatz geeignet ist, und dies zu einem Defekt führt.
- ③ Wenn es durch die Bedienperson unsachgemäß verwendet oder behandelt wird. (Dazu zählen auch Schäden, die durch das Fehlverhalten von Dritten verursacht werden.)
- ④ Wenn der Defekt durch andere Gründe verursacht wird, für die wir nicht verantwortlich sind.
- ⑤ Reparaturen oder Umbauten, die nicht von Kosmek oder ohne unsere Zustimmung und Bestätigung durchgeführt werden, führen zu einem Erlöschen der Garantie.
- ⑤ Sonstige Schäden aufgrund von Naturereignissen oder Katastrophen, die nicht unserem Unternehmen zuzuschreiben sind.
- Teile oder Austauschkosten aufgrund von Teileaufbrauch und Verschleiß. (Zum Beispiel Gummi, Kunststoff, Dichtungsmaterial und einige elektrische Teile.)

Schäden, ausgenommen wenn diese direkt aus einem Produktfehler resultieren, sind von der Garantie ausgenommen.

High-Power-Serie

Pneumatik-Serie

Hydraulik-Serie

Ventile/Kupplung Hydraulikeinheit

Manuelle Produkte Zubehör

Hinweise/ Sonstiges

Hinweise

Einbauhinweise (Für Hydraulik-Serie)

Liste Hydraulikflüssigkeiter

Hinweise zur Verwendung von hydraulischen Drosselventil

Hinweise zum Umga

Wartung/ Inspektion

Garantie

Unternehmensprofil

Unternehmensprofil
Unsere Produkte

Geschichte

Index

Suche in alphabetischer Reihenfolge

Vertriebsstellen

Regelventil

Modell BZL

Modell BZT

Modell BZX

Modell JZG

Direkte Montage auf Spannelementen, Drosselventil • Entlüftungsventil • Gewindestopfen

• Direkte Montage auf Spannelementen

Geschwindigkeitsregelventil

Geschwindigkeitsregelventil

Modell BZL

Modell BZT

Entlüftungsventil

Modell BZX

G-Gewindestopfen

Modell JZG

	Betriebs- druckbereich	Funktionsbeschreibung
Geschwindigkeitsregelventil (Für Niederdruck) Modell BZL → S.729	7MPa oder weniger	Den Durchfluss mit einem Innensechskantschlüssel einstellen. Die Spanngeschwindigkeit kann individuell eingestellt werden. Spannelemente Durchflussregelung
Geschwindigkeitsregelventil (Für Hochdruck) Modell BZT → 5.733	35MPa oder weniger	Der Kreis kann durch Lockern des Drosselventils entlüftet werden.
Entlüftungsventil Modell BZX → S.735	25MPa oder weniger	Der Kreis kann mit einem Innensechskantschlüssel entlüftet werden.
G-Gewindestopfen Modell JZG → S.737	35MPa oder weniger	Der Kreis kann durch Lockern des G-Gewindestopfens entlüftet werden.

High-Power-Serie

Pneumatik-Serie

Hydraulik-Serie

Ventile/Kupplung Hydraulikeinheit

Manuelle Produkte Zubehör

Hinweise/Sonstiges

Bohrungsspanner SFA

SFC

Schwenkspanner

LHA

LHC

LHS

LHW

LT/LG

TLA-2

TLB-2 TLA-1

Hebelspanner

LKA
LKC
LKW
LM/LJ
TMA-2
TMA-1

Abstützelement

LD LC TNC

Zylinder mit Positionsabfrage

LLW

Kompaktzylinder

LL
LLR
LLU
DP
DR
DS
DT

Blockzylinder DBA

DBC

Regelventil BZL

BZT BZX/JZG

Nullpunkt-Spannsystem VS

VT

Hydraulischer Positionszylinder

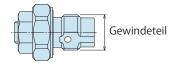
VL VM VJ VK

Niederzug-Spannelement

FP FQ

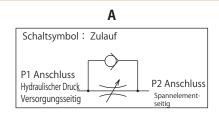
Kundenspezifischer Federspeicherzylinder

DWA/DWB


Modell Nr. Bezeichnung (Geschwindigkeitsregelventil für Hochdruck)

1 G-Gewindemaß

10 : Gewindeteil G1/8A Gewinde 20 : Gewindeteil G1/4A Gewinde


2 Konstruktionsnummer

0 : Revisions number

3 Regelmethode

A : Zulauf

***BZT** verfügt über keine Rücklaufspezifikation.

Spezifikationen

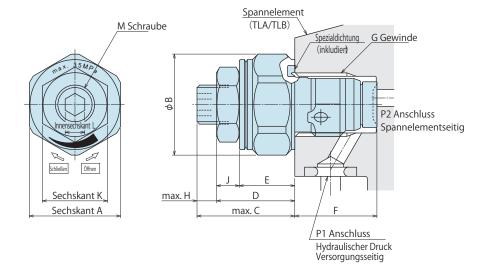
Modell Nr.		BZT0100-A	BZT0200-A	
Max. Betriebsdruck	MPa	3	5	
Min. Betriebsdruck	MPa	1	0	
Regelmethode		Meter-in		
G Gewindemaß		G1/8A	G1/4A	
Öffnungsdruck	MPa	0.04		
Min. Querschnitt (P2→P1:Freie Durchflussricht	tung) mm²	1.1	3.1	
Max. Querschnitt	mm ²	2.6	5.0	
Medium		Standard-Hydrauliköl r	nach ISO-VG-32	
Betriebstemperatur	°C	0 ~ 70		
Anzugsmoment für Gehäuse	N∙m	10	25	

Anmerkungen 1. Der minimale Querschnitt bei vollständiger Öffnung ist gleich wie der maximale Querschnitt in der oben stehenden Tabelle.

- 2. Die Montage muss mit dem empfohlenen Drehmoment erfolgen. Bei unzureichendem Montagedrehmoment kann es aufgrund der Struktur der Metalldichtung vorkommen, dass das Drosselventil die Durchflussrate nicht anpassen kann.
- 3. Keine gebrauchten BZT mit anderen Spannelementen verwenden. Durch die nicht mehr exakt passenden Gewinde wird die Dichtwirkung herabgesetzt und die Durchflussregelung gestört.

Zutreffende Produkte

Modell TLA-2 (doppeltwirkend)		TLB-2 (doppeltwirkend)	TLA-1 (einfachwirkend)	TMA-2 (doppeltwirkend)	TMA-1 (einfachwirkend)
Modeli	Schwenkspanner	Schwenkspanner	Schwenkspanner	Hebelspanner	Hebelspanner
	TLA0801-2C □-□	TLB0801-2C □-□	TLA0802-1C□	TMA0250-2C□	TMA0250-1C□
BZT0100-A	TLA1001-2C □-□	TLB1001-2C □-□	TLA1002-1C□	TMA0400-2C□	TMA0400-1C□
BZ10100-A	TLA1601-2C □-□	TLB1601-2C □-□	TLA1602-1C□	TMA0600-2C□	TMA0600-1C□
				TMA1000-2C□	TMA1000-1C□
	TLA2001-2C 🗆 -	TLB2001-2C □-□	TLA2002-1C□	TMA1600-2C□	TMA1600-1C□
BZT0200-A	TLA2501-2C □-□	TLB2501-2C □-□	TLA2502-1C□	TMA2500-2C□	TMA2500-1C□
	TLA4001-2C □-□	TLB4001-2C □-□	TLA4002-1C□	TMA3200-2C□	TMA3200-1C□


Anmerkungen 1. Die Verwendung eines Drosselventils für TL□040□、TL□060□ wird nicht empfohlen, da es schwierig ist, die Geschwindigkeit einzustellen.

> 2. Bei der Regelung von TMA, TLA sollten sowohl die Spannseite als auch die Löseseite Zulaufschaltungen sein. Wird eine Rücklaufregelung verwendet, wird ungewöhnlich hoher Druck aufgebaut, der zu Ölaustritt und Schäden führt.

Model Nomenklatur

Abmessungen

		, ,
Modell	BZT0100-A	BZT0200-A
А	14	18
В	15.5	20
C	15	16
D	12	13
Е	8.5	9.5
F	(12.6)	(16.1)
G	G1/8	G1/4
Н	3	3
J	3.5	3.5
K	10	10
L	3	3
М	M6×0.75	M6×0.75

Anmerkungen

- 1. Bitte direkt auf die von KOSMEK hergestellten Spannelemente montieren (Modell: TLA, TLB, TMA). (Nicht für andere Aktuatoren, wie zum Beispiel unsere Niederdruck-Serie verwendet, anwendbar.)
- 2. Bei Einsatz im Hydraulikplan für einen anderen Zweck setzen Sie sich bitte mit uns in Verbindung.

Anmerkungen

- 1. Bitte lesen Sie die "Hinweise zur Verwendung von hydraulischen Drosselventilen" als Hilfestellung für das richtige Design des Hydraulikplans.
 - Fehler im Hydraulikplan führen zu Anwendungsfehlfunktionen und Schäden. (Siehe S. 1044)
- 2. Das Entlüften während des Betriebs unter Hochdruck ist gefährlich. Das Entlüften muss unter niedrigerem Druck erfolgen. (Als Referenz: der Mindestbetriebsdruckbereich des Produkts im Kreis.)
- 3. Bei kleiner Zylinderkapazität ist es sehr wahrscheinlich, dass die Strömungsgeschwindigkeit nicht richtig geregelt werden kann. (Empfohlene Zylinderkapazität: 3 cm³ oder mehr)

High-Power-Serie

Pneumatik-Serie

Hydraulik-Serie

Ventile/Kupplung Hydraulikeinheit

Manuelle Produkte Zubehör

Hinweise/Sonstiges

Bohrungsspanner

SFA SFC

Schwenkspanner LHA

> LHC LHS LHW LT/LG TLA-2 TIR-2

TLA-1 Hebelspanner

> LKA LKC LKW LM/LJ TMA-2 TMA-1

Abstützelement

LD LC TNC TC

Zylinder mit Positionsabfrage

LLW

Kompaktzylinde

LLR LLU DP DR DS

DT Blockzylinder

DBA DBC

Regelventil

BZL

BZX/JZG

Nullpunkt-

Spannsystem ٧S

VT

Hydraulischer Positionszylinder

VM ٧J VK

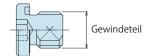
Niederzug-Spannelement

> FΡ FQ

Kundenspezifischer Federspeicherzylinder

DWA/DWB

Regelventil G-Gewindestopfen Modell JZG


Modell Nr. Bezeichnung (G-Gewindestopfen mit Entlüftungsfunktion)

1 G-Gewindemaß

Gewindeteil G1/8A Gewinde
 Gewindeteil G1/4A Gewinde
 Gewindeteil G3/8A Gewinde

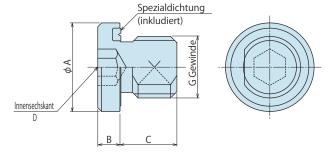
2 Konstruktionsnummer

0 : Revisions number

Spezifikationen

Modell Nr.		JZG010	JZG020	JZG030	
Max. Betriebsdruck	MPa		35		
Prüfdruck	MPa		42		
G-Gewindemaß		G1/8A	G1/4A	G3/8A	
Medium		Standard-Hydrauliköl nach ISO-VG-32			
Betriebstemperatur	℃		0 ~ 70		
Anzugsmoment für Gehäuse	N∙m	10	25	35	

Anmerkungen 1. Das Entlüften unter Hochdruck ist gefährlich. Das Entlüften muss unter niedrigerem Druck erfolgen.
(Als Referenz: der Mindestbetriebsdruckbereich des Produkts im Kreis.)


2. Siehe Verarbeitungsmaße für den Montagebereich von BZL.

Zutreffende Produkte

	DBA (einfachwirkend)	DBC (einfachwirkend)	LC (einfachwirkend)	LHA (doppeltwirkend)	LHC (doppeltwirkend)	LHE (doppeltwirkend)	LHW (doppeltwirkend)	LHS (doppeltwirkend)
Modell Nr.	Blockzylinder	Blockzylinder	Abstützelement	Schwenkspanner	Schwenkspanner	High-Power Swing Clamp	Schwenkspanner	Schwenkspanner
	DBA0250-C	DBC0250-C	LC0402-C	LHA0360-C D-D	LHC0360-C D-D	LHE0300-C	LHW040 -C	LHS0360-C
	DBA0320-C□	DBC0320-C□	LC0482-C	LHA0400-C	LHC0400-C □□-□	LHE0360-C□	LHW048 - C	LHS0400-C
JZG010	<i>DB</i> /10320 C	DDC0320 C	LC0552-C	LHA0480-C	LHC0480-C□□-□	LHE0400-C	LHW055 - C	LHS0480-C
320010			LC0652-C	LHA0550-C□□-□	LHC0550-C □□-□	LHE0480-C□	2	LHS0550-C
			200032 000 0	2.11.0330 2.11.1	260330 622 2	LHE0550-C□		256556 622 2
17.5000	DBA0400-C □	DBC0400-C□	LC0752-C 🗆 🗆 -	LHA0650-C	LHC0650-C □□-□		LHW065 - C - C - C	LHS0650-C□□-□
JZG020	DBA0500-C□	DBC0500-C□	LC0902-C 🗆 🗆 -	LHA0750-C			LHW0751-C	LHS0750-C□□-□
17.0000				LHA0900-C□□-□				LHS0900-C□□-□
JZG030				LHA1050-C□□-□				LHS1050-C□□-□
	LT (einfachwirkend)	LG (einfachwirkend)	LKA (doppeltwirkend)	LKC (doppeltwirkend)	LKE (doppeltwirkend)	LKW (doppeltwirkend)	LM (einfachwirkend)	LJ (einfachwirkend)
Modell Nr.	Schwenkspanner	Schwenkspanner	Hebelspanner	Hebelspanner	High-Power Hebelspanner	Hebelspanner	Hebelspanner	Hebelspanner
	LT0301-C □-□	LG0301-C □-□	LKA0360-C 🗆 🗆 -	LKC0400-C 🛛 - 🖂	LKE0300-C□	LKW040 - C	LM0300-C□	LJ0302-C□
	LT036□-C □-□	LG036□-C□-□	LKA0400-C 🗆 🗆 -	LKC0480-C □-□	LKE0360-C□	LKW048 - C	LM0360-C□	LJ0362-C□
JZG010	LT040□-C □-□	LG040□-C□-□	LKA0480-C 🗆 🗆 -	LKC0550-C □-□	LKE0400-C□	LKW055 - C - C - C	LM0400-C□	LJ0402-C□
	LT048□-C □-□	LG048□-C□-□	LKA0550-C 🗆 🗆 -		LKE0480-C□		LM0480-C□	LJ0482-C□
	LT055□-C □-□	LG055□-C□-□			LKE0550-C□		LM0550-C□	LJ0552-C □
JZG020	LT065□-C□-□	LG065□-C□-□	LKA0650-C 🗆 🗆 -	LKC0650-C □-□		LKW065 - C - C - C	LM0650-C□	LJ0652-C□
JZGUZU	LT075□-C □-□	LG075□-C□-□	LKA0750-C 🗆 🗆 -			LKW0751-C 🗆 🗆 -	LM0750-C□	LJ0752-C□
JZG030		LG090□-C□-□	LKA0900-C 🗆 🗆 -					LJ0902-C□
J2G030		LG105□-C□-□	LKA1050-C 🗆 🗆 -					LJ1052-C□
	LL (doppeltwirkend)	LLR (doppeltwirkend)	LLW (doppeltwirkend)	TLA-2 (doppeltwirkend)	TLB-2 (doppeltwirkend)	TLA-1 (einfachwirkend)	TMA-2 (doppeltwirkend)	TMA-1 (einfachwirkend)
Modell Nr.	Linearzylinder	Linearzylinder	Hydraulikzylinder	Schwenkspanner	Schwenkspanner	Schwenkspanner	Hebelspanner	Hebelspanner
	LL0360-C 🗆 🗆 -	LLR0360-C	LLW036 - C	TLA0401-2C 🛛 - 🗆	TLB0401-2C □-□	TLA0402-1C□	TMA0250-2C□	TMA0250-1C□
	LL0400-C 🗆 🗆 - 🗆	LLR0400-C 🗆 🗆 - 🗆 -	LLW040 - C -	TLA0601-2C □-□	TLB0601-2C □-□	TLA0602-1C□	TMA0400-2C□	TMA0400-1C□
JZG010	LL0480-C □□-□	LLR0480-C 🗆 🗆 - 🗆 -	LLW048 - C	TLA0801-2C □-□	TLB0801-2C □-□	TLA0802-1C□	TMA0600-2C□	TMA0600-1C□
	LL0550-C □□-□	LLR0550-C 🗆 🗆 - 🗆 -		TLA1001-2C 🗆 -	TLB1001-2C □-□	TLA1002-1C□	TMA1000-2C□	TMA1000-1C□
				TLA1601-2C 🗆 -	TLB1601-2C □-□	TLA1602-1C□		
	LL0650-C □□-□	LLR0650-C 🗆 🗆 - 🗆 -		TLA2001-2C 🗆 -	TLB2001-2C □-□	TLA2002-1C□	TMA1600-2C□	TMA1600-1C□
JZG020	LL0750-C □□-□	LLR0750-C 🗆 🗆 - 🗆 -		TLA2501-2C □-□	TLB2501-2C □-□	TLA2502-1C□	TMA2500-2C□	TMA2500-1C□
				TLA4001-2C 🛘 - 🗆	TLB4001-2C 🛛 - 🗆	TLA4002-1C	TMA3200-2C□	TMA3200-1C□
JZG030	LL0900-C □□-□	LLR0900-C 🗆 🗆 - 🗆 -						
323030	LL1050-C □□-□	LLR1050-C 🗆 🗆 - 🗆 -						

Abmessungen

Modell Nr.	JZG010	JZG020	JZG030
Α	14	18	22
В	3.5	4.5	4.5
С	8	9	10
D	5	6	8
G	G1/8A	G1/4A	G3/8A

High-Power-Serie

Pneumatik-Serie

Hydraulik-Serie

Ventile/Kupplung Hydraulikeinheit

Manuelle Produkte Zubehör

Hinweise/Sonstiges

Bohrungsspanner SFA

Schwenkspanner

SFC

LHA
LHC
LHS
LHW
LT/LG
TLA-2
TLB-2
TLA-1

Hebelspanner

LKA
LKC
LKW
LM/LJ
TMA-2
TMA-1

Abstützelement

LC TNC TC

Zylinder mit Positionsabfrage

LLW

Kompaktzylinder

LL
LLR
LLU
DP
DR
DS
DT

Blockzylinder

DBA

DBC

(mm)

Regelventil

BZL

BZT

BZX/JZG

Nullpunkt-Spannsystem

VS VT

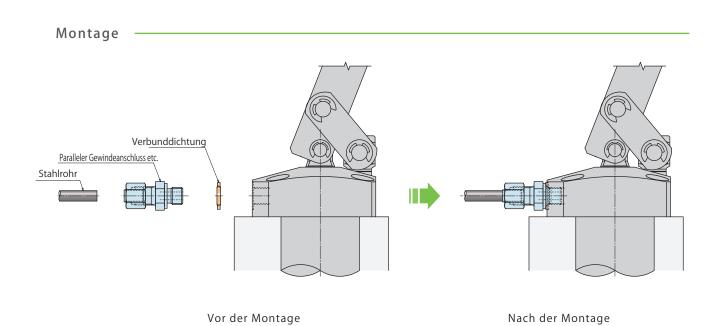
Hydraulischer Positionszylinder

VL VM

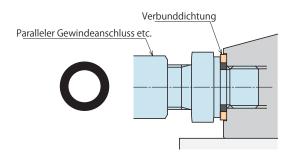
VJ

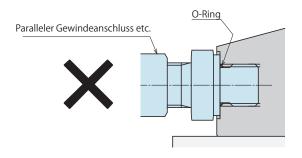
Niederzug-Spannelement FP

FQ


Kundenspezifischer Federspeicherzylinder

DWA/DWB


G-Verschraubung



Das abgebildete Verbindungsstück wird von Ihara Science Corp. hergestellt.

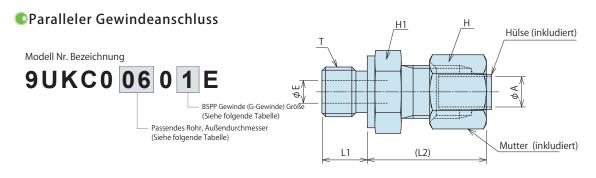
Anmerkungen

Geben Sie die Verbunddichtung zwischen das Spannelement und den parallelen Anschluss etc. (Verbindungsstück). Das Teil kann nicht in Modellen mit O-Ring-Abdichtung verwendet werden.

Verbunddichtung

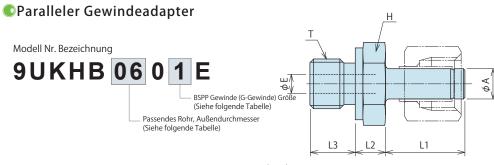
Modell Nr. Bezeichnung

9UKP0C000 1


BSPP Gewinde (G-Gewinde) Größe (Siehe folgende Tabelle)

(mm)

Metallring


Modell Nr.	9UKP0C0001	9UKP0C0002	9UKP0C0003
Passendes Gewinde	G1/8	G1/4	G3/8
d	9.9	13.3	16.8
D	17	20.5	24
t	2	2	2

Anmerkung 1. Das Gummimaterial ist NBR, der Metallring ist aus SPCC von JWG3141 (Kalt verformtes Stahlblech), die in der Standardspezifikation verwendet werden. (Betriebstemperatur -20° ~120°C)

					(mm)
Modell Nr.	9UKC00601E	9UKC00801E	9UKC00602E	9UKC00802E	9UKC01203E
Passendes Rohr, Außendurchmesser ϕ A	6	8	6	8	12
Passendes Gewinde T	G1/8	G1/8	G1/4	G1/4	G3/8
E	4	4	4	6	8
Sechskant Gegenseite H1	14	17	19	19	22
Sechskant Gegenseite H	14	17	14	17	22
L1	8	8	12	12	12
Von Hand anziehen (L2)	(30.5)	(30.5)	(31.5)	(31.5)	(33.5)
Masse (kg)	0.030	0.042	0.048	0.053	0.087

Anmerkung 1. Die Verbunddichtung ist in diesem Produkt nicht enthalten. Beschaffen Sie diese separat.

			(mm)
Modell Nr.	9UKHB0601E	9UKHB0802E	9UKHB1203E
Passendes Rohr, Außendurchmesser ϕ A	6	8	12
Passendes Gewinde T	G1/8	G1/4	G3/8
Е	3	5	8
Sechskant Gegenseite H	14	19	22
L1	21	21	22.5
L2	7	8	9.5
L3	8	12	12
Masse (kg)	0.016	0.033	0.051

Anmerkung 1. Die Verbunddichtung ist in diesem Produkt nicht enthalten. Beschaffen Sie diese separat.

High-Power Serie

Pneumatik-Serie

Hydraulik-Serie

Ventile/Kupplung

Hydraulikeinheit

Gummi

Hinweise/Sonstiges

Manuelles Positionierungssystem VXF

Manueller

Positionszylinder VX

Anschlussblock

LZY-MD LZ-MS LZ-MP TMZ-1MB

TMZ-2MB DZ-M

Anschlussblock/ Mutter

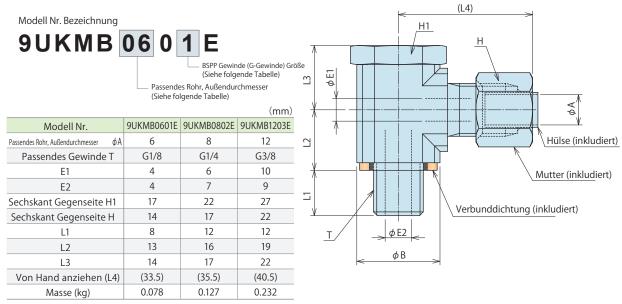
DZ-C
DZ-P
DZ-B
LZ-S
LZ-SQ

TNZ-SQ TNZ-SQ

Druckschalter JB

Manometer

JGA/JGB


Abzweiger

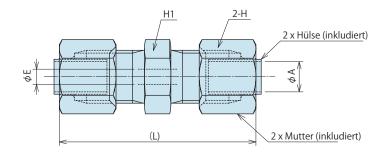
JX

Kupplungsschalter PS

G-Verschraubung

Winkelverschraubung

Anmerkung 1. Nicht als Alternative zu Drehverschraubung verwenden.

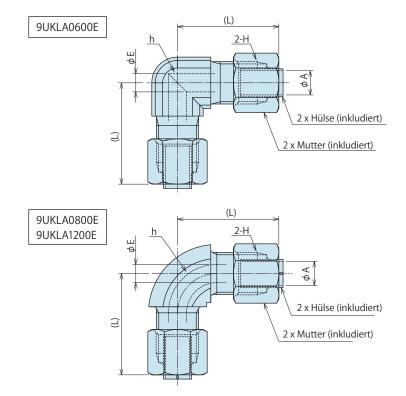

Verschraubung

Modell Nr. Bezeichnung

9UKUA 06 00E

__ Passendes Rohr, Außendurchmesser (Siehe folgende Tabelle)

			(mm)
Modell Nr.	9UKUA0600E	9UKUA0800E	9UKUA1200E
Rohr, Außendurchmesser ϕ A	6	8	12
Е	4	6	10
Sechsk. Gegenseite H1	14	17	19
Sechsk. Gegenseite H	14	17	22
Von Hand anziehen (L	(51)	(52)	(54)
Masse (kg)	0.042	0.059	0.093


Verschraubung (Kniestück)

Modell Nr. Bezeichnung

9UKLA 06 00E

 Passendes Rohr, Außendurchmesser (Siehe folgende Tabelle)

			(mm)
Modell Nr.	9UKLA0600E	9UKLA0800E	9UKLA1200E
Rohr, Außendurchmesser∮A	6	8	12
Е	4	6	10
Schlüsselweite h	14	17	19
Sechsk. Gegenseite H	14	17	22
Von Hand anziehen (L) (30.5)	(33.5)	(35.5)
Masse (kg)	0.048	0.081	0.116

T-Verschraubung

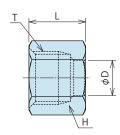
Modell Nr. Bezeichnung

9UKTA 06 00E

Passendes Rohr, Außendurchmesser (Siehe folgende Tabelle)

(mm)

Modell Nr.	9UKTA0600F	9UKTA0800E	9UKTA1200E
	, , , , , ,		
Passendes Rohr, Außendurchmesser ϕ A	6	8	12
Е	4	6	10
Schlüsselweite h	14	17	19
Sechskant Gegenseite H	14	17	22
Von Hand anziehen (L)	(30.5)	(33.5)	(35.5)
Masse kg	0.069	0.122	0.172


Mutter

Modell Nr. Bezeichnung

9UKKN 06 00E

Passendes Rohr, Außendurchmesser

(Siehe folgende Tabelle)

(mm)

Modell Nr.	9UKKN0600E	9UKKN0800E	9UKKN1200E
Passendes Rohr, Außendurchmesser ϕ A	6	8	12
D	7.3	9.3	13.3
Т	M12×1.5	M14×1.5	M18×1.5
Sechskant Gegenseite H	14	17	22
L	15	15	16
Masse kg	0.010	0.015	0.026

Hülse

Modell Nr. Bezeichnung

9UKK0 06 00E

Passendes Rohr, Außendurchmesser
(Siehe folgende Tabelle)

(mm)

Modell Nr.		9UKK00600E	9UKK00800E	9UKK01200E
Passendes Rohr, Außendurchmesser	Α	6	8	12
L		14	14	15
Masse kg		0.002	0.003	0.004

High-Power-Serie

Pneumatik-Serie

Hydraulik-Serie

Ventile/Kupplung Hydraulikeinheit

Manuelle Pro

Hinweise/Sonstiges

Manuelles Positionierungssystem VXF

Manueller Positionszylinder VX

Anschlussblock

WHZ-MD
LZY-MD
LZ-MS
LZ-MP
TMZ-1MB
TMZ-2MB
DZ-M

Anschlussblock/ Mutter

DZ-R
DZ-C
DZ-P
DZ-B
LZ-S
LZ-SQ

TNZ-SQ

Druckschalter

JB

TNZ-S

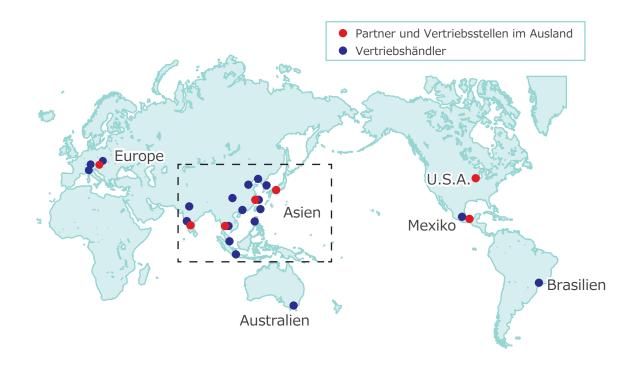
Manometer JGA/JGB

Abzweiger JX

Kupplungsschalter PS

G-Verschraubung

Vertriebsstellen


Vertriebsstellen weltweit

Japan	TEL. +81-78-991-5162	FAX. +81-78-991-8787		
Auslandsverkauf	KOSMEK LTD. 1-5, 2-chome, Murotani, Nishi-ku, Kobe-city, Hyogo, Japan 651-2241 〒651-2241 兵庫県神戸市西区室谷2丁目1番5号			
EUROPE	TEL. +43-063-287587-11	FAX. +43-463-287587-20		
KOSMEK EUROPE GmbH	Schleppeplatz 2 9020 Klagenfurt am Wör	rthersee Austria		
USA	TEL. +1-630-241-3465	FAX. +1-630-241-3834		
KOSMEK (USA) LTD.	1441 Branding Avenue, Suite 110, Downers Grove, IL 60515 USA			
China	TEL.+86-21-54253000	FAX.+86-21-54253709		
KOSMEK (CHINA) LTD. 考世美(上海)貿易有限公司	21/F, Orient International Technology Building, No.58, Xiangchen Rd, Pudong Shanghai 200122., P.R.China 中国上海市浦东新区向城路58号东方国际科技大厦21F室 200122			
India	TEL.+81-80-3565-7481			
KOSMEK LTD - INDIA	F 203, Level-2, First Floor, Prestige Center Point, Cunningham Road, Bangalore -560052 India			
Thailand	TEL. +66-2-715-3450	FAX. +66-2-715-3453		
Repräsentanz Thailand	67 Soi 58, RAMA 9 Rd., Suanluang, Suanluang, Bangkok 10250, Thailand			
Mexico	TEL. +52-442-161-2347			
KOSMEK USA Mexico Office	Blvd Jurica la Campana 1040, B Colonia Punta Juriquilla			
Taiwan (Exklusivhändler Taiwan)	TEL. +886-2-82261860	FAX. +886-2-82261890		
Full Life Trading Co., Ltd. 盈生貿易有限公司	16F-4, No.2, Jian Ba Rd., Zhonghe District, New Taipei City Taiwan 23511 台湾新北市中和區建八路2號 16F-4(遠東世紀廣場)			
Philippines (Exklusivhändler Philippinen)	TEL.+63-2-310-7286	FAX. +63-2-310-7286		
G.E.T. Inc, Phil.	Victoria Wave Special Economic Zone Mt. Apo Building, Brgy. 186, North Caloocan City, Metro Manila, Philippines 1427			
Indonesia (Exklusivhändler Indonesien)	TEL. +62-21-5818632	FAX. +62-21-5814857		
P.T PANDU HYDRO PNEUMATICS	Ruko Green Garden Blok Z- II No.51 Rt.005 Rw.00	08 Kedoya Utara-Kebon Jeruk Jakarta Barat 11520 Indonesia		

Vertriebsstellen in Japan

Hauptsitz Vertriebsstelle Osaka	TEL.078-991-5115	FAX.078-991-8787
Auslandsverkauf	〒651-2241 兵庫県神戸	市西区室谷2丁目1番5号
	TEL.048-652-8839	FAX.048-652-8828
Vertriebsstelle Tokio	〒331-0815 埼玉県さい	たま市北区大成町4丁目81番地
Marketala artalla Nasara	TEL.0566-74-8778	FAX.0566-74-8808
Vertriebsstelle Nagoya	〒446-0076 愛知県安城	市美園町2丁目10番地1
Vertriebsstelle Fukuoka	TEL.092-433-0424	FAX.092-433-0426
	〒812-0006 福岡県福岡	市博多区上牟田1丁目8-10-101

Globales Netzwerk

Detailkarte Asien

